http://www.businessinsider.com/r-finland-to-ease-rules-on-hunting-wild-boar-to-fight-a-swine-fever-2016-12
Human infections with African Swine Fever may be the biggest threat to public health these days. ASFV is spreading in China, Eastern Europe, and Korea. It is on the border between Poland and Germany. Will Germany lead the way in exploring the threat of African Swine Fever to human health?
TheAfrican Swine Fever Novel Audiobook Excerpt
Wednesday, December 14, 2016
Thursday, August 25, 2016
Friday, August 12, 2016
Breaking News!
By Vladislav Vorotnikov, 12-Aug-2016
Russia has been rocked by several
outbreaks of African swine fever (ASF) in the first two weeks of August,
the country’s veterinary body Rosselkhoznadzor has claimed.
http://www.globalmeatnews.com/Livestock/Russia-massive-virus-outbreak-shakes-pig-industry
Since antibodies for the African Swine virus have been detected in humans, the possibility of human infection with the African Swine virus exists and may thus far have escaped any systematic screening. Thus, any preventive and therapeutic approach to African Swine fever can have far-reaching implications to control immune deficiency conditions in humans.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3274504/
http://link.springer.com/article/10.1007%2Fs11262-013-0878-2
Another hint about similarity of HHV-6 and African Swine Fever Virus?
Cholesterol flux is required for endosomal progression of African swine fever virions during the initial establishment of infection.
http://www.ncbi.nlm.nih.gov/pubmed/26608317
Russian Scientist: ASF could become a human health risk
"The African swine fever (ASF) virus, may in the future become
dangerous for humans, according to the head of the Russian Epidemiology
Service, Chief State Sanitary Doctor Gennady Onishchenko, at the
press-conference in St. Petersburg. According to him almost all viruses
from time to time go through mutation processes which can give them some
additional functions."
http://www.pigprogress.net/Health-Diseases/Outbreaks/2013/7/ASF-could-become-a-human-health-risk-1308047W/
Background on African Swine Fever Virus as a human pathogen:
Since antibodies for the African Swine virus have been detected in humans, the possibility of human infection with the African Swine virus exists and may thus far have escaped any systematic screening. Thus, any preventive and therapeutic approach to African Swine fever can have far-reaching implications to control immune deficiency conditions in humans.
"African Swine fever is an endemic disease in sub-Saharan Africa and
many other parts of the developing world. It is caused by the African
Swine virus that primarily replicates in macrophages and monocytes
leading to the impairment of the structure and function of the immune
system of the infected organisms. Until now the African Swine epidemic
continues to spread despite all efforts to contain it. Thus, there is
an objective need for effective, safe and affordable preventive and
therapeutic approaches, in particular for effective vaccines, to
control and eventually eradicate this disease. Since the characteristic
feature of the African Swine virus is to impair the immune system and
to cause immune deficiencies in its hosts the development of vaccines
and other therapeutic approaches against the African Swine virus has
implications for other immune deficiencies or diseases. Several other
viruses are also known to cause immunodeficiency-like syndromes in
humans, including cytomegalovirus, Epstein Barr Virus
and others. Moreover, a series of cases of so-called "idiopathic"
immunodeficiencies have been documented that display
CD4+T-lymphocytopenia with opportunistic infections, but show no
evidence of HIV infection. Since antibodies for the African Swine virus
have been detected in humans, the possibility of human infection with
the African Swine virus exists and may thus far have escaped any systematic screening. Thus, any preventive and therapeutic approach to African Swine fever can have far-reaching implications to control immune deficiency conditions in humans."
http://www.faqs.org/patents/app/20080207875
Detection of Novel Sequences Related to African Swine Fever Virus in Human Serum and Sewage.
Loh J, Zhao G, Presti RM, Holtz LR, Finkbeiner SR, Droit L, Villasana Z, Todd C, Pipas JM, Calgua B, Girones R, Wang D, Virgin HW.
Departments of Pathology & Immunology and Molecular Microbiology, Department of Medicine and Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri; Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Microbiology, Faculty of Biology, University of Barcelona, Barcelona, Spain.
"The family Asfarviridae contains only a single virus species, African swine fever virus (ASFV). ASFV is a viral agent with significant economic impact due to its devastating effects on populations of domesticated pigs during outbreaks, but has not been reported to infect humans. We report here the discovery of novel viral sequences in human serum and sewage which are clearly related to the Asfarvirus family, but highly divergent from ASFV. Detection of these sequences suggests that greater genetic diversity may exist among Asfarviruses than previously thought, and raises the possibility that human infection by Asfarviruses may occur."
http://www.ncbi.nlm.nih.gov/pubmed/19812170?dopt=Abstracthttp://www.faqs.org/patents/app/20080207875
Detection of Novel Sequences Related to African Swine Fever Virus in Human Serum and Sewage.
Loh J, Zhao G, Presti RM, Holtz LR, Finkbeiner SR, Droit L, Villasana Z, Todd C, Pipas JM, Calgua B, Girones R, Wang D, Virgin HW.
Departments of Pathology & Immunology and Molecular Microbiology, Department of Medicine and Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri; Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Microbiology, Faculty of Biology, University of Barcelona, Barcelona, Spain.
"The family Asfarviridae contains only a single virus species, African swine fever virus (ASFV). ASFV is a viral agent with significant economic impact due to its devastating effects on populations of domesticated pigs during outbreaks, but has not been reported to infect humans. We report here the discovery of novel viral sequences in human serum and sewage which are clearly related to the Asfarvirus family, but highly divergent from ASFV. Detection of these sequences suggests that greater genetic diversity may exist among Asfarviruses than previously thought, and raises the possibility that human infection by Asfarviruses may occur."
African Swine Fever Virus (Asfarviridae) sequences found in people with febrile illnesses
Abstract
Virus Identification in Unknown Tropical Febrile Illness Cases Using Deep Sequencing
Dengue virus is an emerging infectious agent that infects an estimated
50–100 million people annually worldwide, yet current diagnostic
practices cannot detect an etiologic pathogen in ∼40% of dengue-like
illnesses. Metagenomic approaches to pathogen detection, such as viral
microarrays and deep sequencing, are promising tools to address
emerging and non-diagnosable disease challenges. In this study, we
used the Virochip microarray and deep sequencing to characterize the
spectrum of viruses present in human sera from 123 Nicaraguan patients
presenting with dengue-like symptoms but testing negative for dengue
virus. We utilized a barcoding strategy to simultaneously deep
sequence multiple serum specimens, generating on average over 1
million reads per sample. We then implemented a stepwise bioinformatic
filtering pipeline to remove the majority of human and low-quality
sequences to improve the speed and accuracy of subsequent unbiased
database searches. By deep sequencing, we were able to detect virus
sequence in 37% (45/123) of previously negative cases. These included
13 cases with Human Herpesvirus 6 sequences. Other samples contained
sequences with similarity to sequences from viruses in the Herpesviridae, Flaviviridae, Circoviridae, Anelloviridae, Asfarviridae, and Parvoviridae
families. In some cases, the putative viral sequences were virtually
identical to known viruses, and in others they diverged, suggesting
that they may derive from novel viruses. These results demonstrate the
utility of unbiased metagenomic approaches in the detection of known
and divergent viruses in the study of tropical febrile illness.
Detection of African swine fever virus-like sequences in ponds in the Mississippi Delta through metagenomic sequencing
" . .. further study is needed to characterize their potential risks to both public health and agricultural development."http://link.springer.com/article/10.1007%2Fs11262-013-0878-2
ASF virus, adapted to grow in VERO cells, produces a strong cytopathic effect in human macrophages leading to cell destruction.
http://vir.sgmjournals.org/content/34/3/455.shortAnother hint about similarity of HHV-6 and African Swine Fever Virus?
Cholesterol flux is required for endosomal progression of African swine fever virions during the initial establishment of infection.
http://www.ncbi.nlm.nih.gov/pubmed/26608317
Human herpesvirus 6 envelope cholesterol is required for virus entry.
http://www.ncbi.nlm.nih.gov/pubmed/16432012
African Swine Fever Primarily Transmitted by Humans
http://www.aasp.org/news/story.php?id=4824
Breaking news!
Russia: massive virus outbreak shakes pig industry
By Vladislav Vorotnikov, 12-Aug-2016
Russia has been rocked by several
outbreaks of African swine fever (ASF) in the first two weeks of August,
the country’s veterinary body Rosselkhoznadzor has claimed.
http://www.globalmeatnews.com/Livestock/Russia-massive-virus-outbreak-shakes-pig-industry
Since antibodies for the African Swine virus have been detected in humans, the possibility of human infection with the African Swine virus exists and may thus far have escaped any systematic screening. Thus, any preventive and therapeutic approach to African Swine fever can have far-reaching implications to control immune deficiency conditions in humans.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3274504/
http://link.springer.com/article/10.1007%2Fs11262-013-0878-2
Another hint about similarity of HHV-6 and African Swine Fever Virus?
Cholesterol flux is required for endosomal progression of African swine fever virions during the initial establishment of infection.
http://www.ncbi.nlm.nih.gov/pubmed/26608317
Russian Scientist: ASF could become a human health risk
"The African swine fever (ASF) virus, may in the future become
dangerous for humans, according to the head of the Russian Epidemiology
Service, Chief State Sanitary Doctor Gennady Onishchenko, at the
press-conference in St. Petersburg. According to him almost all viruses
from time to time go through mutation processes which can give them some
additional functions."
http://www.pigprogress.net/Health-Diseases/Outbreaks/2013/7/ASF-could-become-a-human-health-risk-1308047W/
Background on African Swine Fever Virus as a human pathogen:
Since antibodies for the African Swine virus have been detected in humans, the possibility of human infection with the African Swine virus exists and may thus far have escaped any systematic screening. Thus, any preventive and therapeutic approach to African Swine fever can have far-reaching implications to control immune deficiency conditions in humans.
"African Swine fever is an endemic disease in sub-Saharan Africa and
many other parts of the developing world. It is caused by the African
Swine virus that primarily replicates in macrophages and monocytes
leading to the impairment of the structure and function of the immune
system of the infected organisms. Until now the African Swine epidemic
continues to spread despite all efforts to contain it. Thus, there is
an objective need for effective, safe and affordable preventive and
therapeutic approaches, in particular for effective vaccines, to
control and eventually eradicate this disease. Since the characteristic
feature of the African Swine virus is to impair the immune system and
to cause immune deficiencies in its hosts the development of vaccines
and other therapeutic approaches against the African Swine virus has
implications for other immune deficiencies or diseases. Several other
viruses are also known to cause immunodeficiency-like syndromes in
humans, including cytomegalovirus, Epstein Barr Virus
and others. Moreover, a series of cases of so-called "idiopathic"
immunodeficiencies have been documented that display
CD4+T-lymphocytopenia with opportunistic infections, but show no
evidence of HIV infection. Since antibodies for the African Swine virus
have been detected in humans, the possibility of human infection with
the African Swine virus exists and may thus far have escaped any systematic screening. Thus, any preventive and therapeutic approach to African Swine fever can have far-reaching implications to control immune deficiency conditions in humans."http://www.faqs.org/patents/app/20080207875
Detection of Novel Sequences Related to African Swine Fever Virus in Human Serum and Sewage.
Loh J, Zhao G, Presti RM, Holtz LR, Finkbeiner SR, Droit L, Villasana Z, Todd C, Pipas JM, Calgua B, Girones R, Wang D, Virgin HW.
Departments of Pathology & Immunology and Molecular Microbiology, Department of Medicine and Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri; Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Microbiology, Faculty of Biology, University of Barcelona, Barcelona, Spain.
"The family Asfarviridae contains only a single virus species, African swine fever virus (ASFV). ASFV is a viral agent with significant economic impact due to its devastating effects on populations of domesticated pigs during outbreaks, but has not been reported to infect humans. We report here the discovery of novel viral sequences in human serum and sewage which are clearly related to the Asfarvirus family, but highly divergent from ASFV. Detection of these sequences suggests that greater genetic diversity may exist among Asfarviruses than previously thought, and raises the possibility that human infection by Asfarviruses may occur."
http://www.ncbi.nlm.nih.gov/pubmed/19812170?dopt=AbstractDetection of Novel Sequences Related to African Swine Fever Virus in Human Serum and Sewage.
Loh J, Zhao G, Presti RM, Holtz LR, Finkbeiner SR, Droit L, Villasana Z, Todd C, Pipas JM, Calgua B, Girones R, Wang D, Virgin HW.
Departments of Pathology & Immunology and Molecular Microbiology, Department of Medicine and Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri; Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Microbiology, Faculty of Biology, University of Barcelona, Barcelona, Spain.
"The family Asfarviridae contains only a single virus species, African swine fever virus (ASFV). ASFV is a viral agent with significant economic impact due to its devastating effects on populations of domesticated pigs during outbreaks, but has not been reported to infect humans. We report here the discovery of novel viral sequences in human serum and sewage which are clearly related to the Asfarvirus family, but highly divergent from ASFV. Detection of these sequences suggests that greater genetic diversity may exist among Asfarviruses than previously thought, and raises the possibility that human infection by Asfarviruses may occur."
African Swine Fever Virus (Asfarviridae) sequences found in people with febrile illnesses
Abstract
Virus Identification in Unknown Tropical Febrile Illness Cases Using Deep Sequencing
Dengue virus is an emerging infectious agent that infects an estimated
50–100 million people annually worldwide, yet current diagnostic
practices cannot detect an etiologic pathogen in ∼40% of dengue-like
illnesses. Metagenomic approaches to pathogen detection, such as viral
microarrays and deep sequencing, are promising tools to address
emerging and non-diagnosable disease challenges. In this study, we
used the Virochip microarray and deep sequencing to characterize the
spectrum of viruses present in human sera from 123 Nicaraguan patients
presenting with dengue-like symptoms but testing negative for dengue
virus. We utilized a barcoding strategy to simultaneously deep
sequence multiple serum specimens, generating on average over 1
million reads per sample. We then implemented a stepwise bioinformatic
filtering pipeline to remove the majority of human and low-quality
sequences to improve the speed and accuracy of subsequent unbiased
database searches. By deep sequencing, we were able to detect virus
sequence in 37% (45/123) of previously negative cases. These included
13 cases with Human Herpesvirus 6 sequences. Other samples contained
sequences with similarity to sequences from viruses in the Herpesviridae, Flaviviridae, Circoviridae, Anelloviridae, Asfarviridae, and Parvoviridae
families. In some cases, the putative viral sequences were virtually
identical to known viruses, and in others they diverged, suggesting
that they may derive from novel viruses. These results demonstrate the
utility of unbiased metagenomic approaches in the detection of known
and divergent viruses in the study of tropical febrile illness.
Detection of African swine fever virus-like sequences in ponds in the Mississippi Delta through metagenomic sequencing
" . .. further study is needed to characterize their potential risks to both public health and agricultural development."http://link.springer.com/article/10.1007%2Fs11262-013-0878-2
ASF virus, adapted to grow in VERO cells, produces a strong cytopathic effect in human macrophages leading to cell destruction.
http://vir.sgmjournals.org/content/34/3/455.shortAnother hint about similarity of HHV-6 and African Swine Fever Virus?
Cholesterol flux is required for endosomal progression of African swine fever virions during the initial establishment of infection.
http://www.ncbi.nlm.nih.gov/pubmed/26608317
Human herpesvirus 6 envelope cholesterol is required for virus entry.
http://www.ncbi.nlm.nih.gov/pubmed/16432012
African Swine Fever Primarily Transmitted by Humans
http://www.aasp.org/news/story.php?id=4824
Saturday, June 11, 2016
African Swine Fever Breaks Out in South Africa
"If the disease gets into the wild pig
population, we may end up with an endemic situation being created, which
will result in outbreaks being reported periodically and affecting
trade of pigs and pig products from the country," the Department of
Agriculture, Forestry and Fisheries said in a statement.
http://af.reuters.com/article/topNews/idAFKCN0YW1IX
African Swine Fever Virus May Also be a Human Pathogen
Two months later, Gallo published an article in Science (Oct 31, 1986) that he discovered a new possible co-factor in AIDS, a virus he called Human B Cell Lymphotropic Virus which he named HBLV. Like ASFV, HBLV infected B cells and also lived in macrophages. Did Gallo steal Beldekas’s ASF virus he found in AIDS patients and rename it HBLV? Later on, when Gallo found that HBLV could also infect other immune cells, he changed the name of HBLV to HHV-6. Eventually, Gallo identified his HBLV as the variant A strain of HHV-6 and called it a human herpesvirus.
--Mark Konlee
http://www.keephopealive.org/report10.html
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3274504/
" . .. further study is needed to characterize their potential risks to both public health and agricultural development."
http://link.springer.com/article/10.1007%2Fs11262-013-0878-2
http://vir.sgmjournals.org/content/34/3/455.short
http://af.reuters.com/article/topNews/idAFKCN0YW1IX
African Swine Fever Virus May Also be a Human Pathogen
In August, 1986, John Beldekas was invited to go to the NCI and present his findings on the link between ASFV [African Swine Fever virus] and AIDS, which he did. Beldekas gave samples of all his lab work to Gallo. Later, the government asked Beldekas to turn over all his reagents and lab work to the government, which he did. Beldekas had found ASFV presence in nine of 21 AIDS patients using two standard procedures. At the meeting, Gallo was reported saying: “we know it is not ASFV.” How could Gallo know this as he hadn’t done any of his own tests to look for ASFV?
Two months later, Gallo published an article in Science (Oct 31, 1986) that he discovered a new possible co-factor in AIDS, a virus he called Human B Cell Lymphotropic Virus which he named HBLV. Like ASFV, HBLV infected B cells and also lived in macrophages. Did Gallo steal Beldekas’s ASF virus he found in AIDS patients and rename it HBLV? Later on, when Gallo found that HBLV could also infect other immune cells, he changed the name of HBLV to HHV-6. Eventually, Gallo identified his HBLV as the variant A strain of HHV-6 and called it a human herpesvirus.
--Mark Konlee
http://www.keephopealive.org/report10.html
Russian Scientist: ASF could become a human health risk
"The African swine fever (ASF) virus, may in the future become dangerous for humans, according to the head of the Russian Epidemiology Service, Chief State Sanitary Doctor Gennady Onishchenko, at the press-conference in St. Petersburg. According to him almost all viruses from time to time go through mutation processes which can give them some additional functions."
http://www.pigprogress.net/Health-Diseases/Outbreaks/2013/7/ASF-could-become-a-human-health-risk-1308047W/
Background on African Swine Fever Virus as a human pathogen:
"African Swine fever is an endemic disease in sub-Saharan Africa and
many other parts of the developing world. It is caused by the African
Swine virus that primarily replicates in macrophages and monocytes
leading to the impairment of the structure and function of the immune
system of the infected organisms. Until now the African Swine epidemic
continues to spread despite all efforts to contain it. Thus, there is
an objective need for effective, safe and affordable preventive and
therapeutic approaches, in particular for effective vaccines, to
control and eventually eradicate this disease. Since the characteristic
feature of the African Swine virus is to impair the immune system and
to cause immune deficiencies in its hosts the development of vaccines
and other therapeutic approaches against the African Swine virus has
implications for other immune deficiencies or diseases. Several other
viruses are also known to cause immunodeficiency-like syndromes in
humans, including cytomegalovirus, Epstein Barr Virus
and others. Moreover, a series of cases of so-called "idiopathic"
immunodeficiencies have been documented that display
CD4+T-lymphocytopenia with opportunistic infections, but show no
evidence of HIV infection. Since antibodies for the African Swine virus
have been detected in humans, the possibility of human infection with
the African Swine virus exists and may thus far have escaped any systematic screening. Thus, any preventive and therapeutic approach to African Swine fever can have far-reaching implications to control immune deficiency conditions in humans."http://www.faqs.org/patents/app/20080207875
Detection of Novel Sequences Related to African Swine Fever Virus in Human Serum and Sewage.
Loh J, Zhao G, Presti RM, Holtz LR, Finkbeiner SR, Droit L, Villasana Z, Todd C, Pipas JM, Calgua B, Girones R, Wang D, Virgin HW.
Departments of Pathology & Immunology and Molecular Microbiology, Department of Medicine and Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri; Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Microbiology, Faculty of Biology, University of Barcelona, Barcelona, Spain.
"The family Asfarviridae contains only a single virus species, African swine fever virus (ASFV). ASFV is a viral agent with significant economic impact due to its devastating effects on populations of domesticated pigs during outbreaks, but has not been reported to infect humans. We report here the discovery of novel viral sequences in human serum and sewage which are clearly related to the Asfarvirus family, but highly divergent from ASFV. Detection of these sequences suggests that greater genetic diversity may exist among Asfarviruses than previously thought, and raises the possibility that human infection by Asfarviruses may occur."
http://www.ncbi.nlm.nih.gov/pubmed/19812170?dopt=AbstractDetection of Novel Sequences Related to African Swine Fever Virus in Human Serum and Sewage.
Loh J, Zhao G, Presti RM, Holtz LR, Finkbeiner SR, Droit L, Villasana Z, Todd C, Pipas JM, Calgua B, Girones R, Wang D, Virgin HW.
Departments of Pathology & Immunology and Molecular Microbiology, Department of Medicine and Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri; Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Microbiology, Faculty of Biology, University of Barcelona, Barcelona, Spain.
"The family Asfarviridae contains only a single virus species, African swine fever virus (ASFV). ASFV is a viral agent with significant economic impact due to its devastating effects on populations of domesticated pigs during outbreaks, but has not been reported to infect humans. We report here the discovery of novel viral sequences in human serum and sewage which are clearly related to the Asfarvirus family, but highly divergent from ASFV. Detection of these sequences suggests that greater genetic diversity may exist among Asfarviruses than previously thought, and raises the possibility that human infection by Asfarviruses may occur."
African Swine Fever Virus (Asfarviridae) sequences found in people with febrile illnesses
Abstract
Virus Identification in Unknown Tropical Febrile Illness Cases Using Deep Sequencing
Dengue virus is an emerging infectious agent that infects an estimated
50–100 million people annually worldwide, yet current diagnostic
practices cannot detect an etiologic pathogen in ∼40% of dengue-like
illnesses. Metagenomic approaches to pathogen detection, such as viral
microarrays and deep sequencing, are promising tools to address
emerging and non-diagnosable disease challenges. In this study, we
used the Virochip microarray and deep sequencing to characterize the
spectrum of viruses present in human sera from 123 Nicaraguan patients
presenting with dengue-like symptoms but testing negative for dengue
virus. We utilized a barcoding strategy to simultaneously deep
sequence multiple serum specimens, generating on average over 1
million reads per sample. We then implemented a stepwise bioinformatic
filtering pipeline to remove the majority of human and low-quality
sequences to improve the speed and accuracy of subsequent unbiased
database searches. By deep sequencing, we were able to detect virus
sequence in 37% (45/123) of previously negative cases. These included
13 cases with Human Herpesvirus 6 sequences. Other samples contained
sequences with similarity to sequences from viruses in the Herpesviridae, Flaviviridae, Circoviridae, Anelloviridae, Asfarviridae, and Parvoviridae
families. In some cases, the putative viral sequences were virtually
identical to known viruses, and in others they diverged, suggesting
that they may derive from novel viruses. These results demonstrate the
utility of unbiased metagenomic approaches in the detection of known
and divergent viruses in the study of tropical febrile illness.
Detection of African swine fever virus-like sequences in ponds in the Mississippi Delta through metagenomic sequencing
http://link.springer.com/article/10.1007%2Fs11262-013-0878-2
ASF virus, adapted to grow in VERO cells, produces a strong cytopathic effect in human macrophages leading to cell destruction.
Wednesday, June 8, 2016
Breaking News! The link between Bees, AIDS and African Swine Fever Virus
"McInnis and Gregg suspect iridovirus — a virus that suppresses the
immune system — could be infecting honeybees and keeping them from
returning to their colonies. The virus, McInnis said, may have an
“AIDS-like effect” on the bees, making them more susceptible to common
diseases that wouldn’t normally be fatal to them.
“I think this could be earth-shattering information if we’re right. Everybody depends on honeybees to help grow the food that we eat,” said Gregg, who while working at Plum Island treated African swine fever in pigs — a virus similar to the one he’s investigating with McInnis. “Most other people trying to solve this problem are looking at pesticide use. There are very few others who are investigating the possible spread of a virus.”
http://www.newsday.com/long-island/suffolk/greenport-teen-joe-mcinnis-wins-award-for-honeybee-research-1.11888138
“I think this could be earth-shattering information if we’re right. Everybody depends on honeybees to help grow the food that we eat,” said Gregg, who while working at Plum Island treated African swine fever in pigs — a virus similar to the one he’s investigating with McInnis. “Most other people trying to solve this problem are looking at pesticide use. There are very few others who are investigating the possible spread of a virus.”
http://www.newsday.com/long-island/suffolk/greenport-teen-joe-mcinnis-wins-award-for-honeybee-research-1.11888138
Wednesday, June 1, 2016
Is Mysterious Hemorrhagic Fever in South Sudan caused by African Swine Fever?
Mysterious Hemorrhagic Fever Outbreak Stumps Disease Detectives
"So far, there have been 51 cases — including 10 deaths — from an unknown disease in the northern part of South Sudan. The main symptoms of the disease are similar to those seen with Ebola: unexplained bleeding, fever, fatigue, headache and vomiting."
http://www.npr.org/sections/goatsandsoda/2016/05/31/480150707/mysterious-hemorrhagic-fever-outbreak-stumps-disease-detectives?sc=tw
Epidemiological Overview of African Swine Fever in Uganda (2001–2012)
"Uganda is landlocked and shares borders with Southern Sudan (435 km) on the northern side, Democratic Republic of Congo (DRC, 765 km) on the western side, Tanzania (396 km) and Rwanda (169 km) on the southern side, and Kenya (933 km) on the eastern side (Figure 1). The total number of districts adjacent to the international borders reporting ASF outbreaks was 18. Eighty (20.6%) ASF outbreaks occurred in 18 districts along the international borders compared to 308 outbreaks that occurred in districts that did not share an international border. The number of ASF outbreaks varied between the different international borders, the highest being adjacent with DRC (31 outbreaks in eight districts) and Tanzania borders (26 outbreaks in 2 districts) while only 3 districts bordering Kenya reported 13 outbreaks. The lowest number of ASF outbreaks was reported among the districts bordering Rwanda (one outbreak in one district) and Southern Sudan (9 outbreaks in 4 districts)."
http://www.hindawi.com/journals/jvm/2013/949638/
Thursday, January 28, 2016
Are Pigs Spreading the Zika Virus?
Zika virus: Outbreak 'likely to spread across Americas' says WHO - BBC News
http://news.yahoo.com/zika-virus-expected-spread-throughout-americas-115045026.html
Zika virus (ZIKV) is a member of the Flaviviridae virus family and the Flavivirus genus.
https://en.wikipedia.org/wiki/Zika_virus
Flaviviridae is a family of viruses. Humans and other mammals serve as natural hosts
https://en.wikipedia.org/wiki/Flaviviridae
Brazil: world’s fourth biggest producer of pig meat
http://news.yahoo.com/zika-virus-expected-spread-throughout-americas-115045026.html
Zika virus (ZIKV) is a member of the Flaviviridae virus family and the Flavivirus genus.
https://en.wikipedia.org/wiki/Zika_virus
Flaviviridae is a family of viruses. Humans and other mammals serve as natural hosts
https://en.wikipedia.org/wiki/Flaviviridae
Antibodies to West Nile virus and related flaviviruses in wild boar, red foxes and other mesomammals from Spain.
http://www.ncbi.nlm.nih.gov/pubmed/22595138
Nonsuppurative encephalitis in piglets after experimental inoculation of Japanese encephalitis flavivirus isolated from pigs
http://www.ncbi.nlm.nih.gov/pubmed/14715969
Brazil: world’s fourth biggest producer of pig meat
Brazil is the world’s fourth biggest producer of pig meat, producing
3,054,000 tonnes in 2008. This represents 2.9% of the total world
https://www.pig333.com/what_the_experts_say/pig-production-in-brazil-production-and-consumption-1-2_1359/
Saturday, January 16, 2016
Another hint about similarity of HHV-6 and African Swine Fever Virus?
Cholesterol flux is required for endosomal progression of African swine fever virions during the initial establishment of infection.
http://www.ncbi.nlm.nih.gov/pubmed/26608317
http://www.ncbi.nlm.nih.gov/pubmed/26608317
Human herpesvirus 6 envelope cholesterol is required for virus entry.
http://www.ncbi.nlm.nih.gov/pubmed/16432012
Thursday, January 14, 2016
Breaking News: African swine fever hits Kampala, the Capital of Uganda
http://www.redpepper.co.ug/african-swine-fever-hits-kampala/
What everyone should know about African Swine Fever Virus
Two months later, Gallo published an article in Science (Oct 31, 1986) that he discovered a new possible co-factor in AIDS, a virus he called Human B Cell Lymphotropic Virus which he named HBLV. Like ASFV, HBLV infected B cells and also lived in macrophages. Did Gallo steal Beldekas’s ASF virus he found in AIDS patients and rename it HBLV? Later on, when Gallo found that HBLV could also infect other immune cells, he changed the name of HBLV to HHV-6. Eventually, Gallo identified his HBLV as the variant A strain of HHV-6 and called it a human herpesvirus.
--Mark Konlee
http://www.keephopealive.org/report10.html
Potential harm of African Swine Fever to human health is poorly undertstood
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3274504/
http://link.springer.com/article/10.1007%2Fs11262-013-0878-2
43. The right not to be lied to about the ability of ASFV to affect Aortic and Heart Microvascular Endothelial cells.
44. The right not be lied to about the relationship of ASFV to HHV-6, HHV-7 and HHV-8.
What everyone should know about African Swine Fever Virus
Russian Scientist: ASF could become a human health risk
"The African swine fever (ASF) virus, may in the future become
dangerous for humans, according to the head of the Russian Epidemiology
Service, Chief State Sanitary Doctor Gennady Onishchenko, at the
press-conference in St. Petersburg. According to him almost all viruses
from time to time go through mutation processes which can give them some
additional functions."
http://www.pigprogress.net/Health-Diseases/Outbreaks/2013/7/ASF-could-become-a-human-health-risk-1308047W/
Was John Beldekas the first scientist to discover African Swine Fever Virus in human serum?
In August, 1986, John Beldekas was invited to go to the NCI and present his findings on the link between ASFV [African Swine Fever virus] and AIDS, which he did. Beldekas gave samples of all his lab work to Gallo. Later, the government asked Beldekas to turn over all his reagents and lab work to the government, which he did. Beldekas had found ASFV presence in nine of 21 AIDS patients using two standard procedures. At the meeting, Gallo was reported saying: “we know it is not ASFV.” How could Gallo know this as he hadn’t done any of his own tests to look for ASFV?Two months later, Gallo published an article in Science (Oct 31, 1986) that he discovered a new possible co-factor in AIDS, a virus he called Human B Cell Lymphotropic Virus which he named HBLV. Like ASFV, HBLV infected B cells and also lived in macrophages. Did Gallo steal Beldekas’s ASF virus he found in AIDS patients and rename it HBLV? Later on, when Gallo found that HBLV could also infect other immune cells, he changed the name of HBLV to HHV-6. Eventually, Gallo identified his HBLV as the variant A strain of HHV-6 and called it a human herpesvirus.
--Mark Konlee
http://www.keephopealive.org/report10.html
Potential harm of African Swine Fever to human health is poorly undertstood
http://www.globalmeatnews.com/Industry-Markets/Russian-prisoners-fed-contaminated-pork
Background on African Swine Fever Virus as a human pathogen:
"African Swine fever is an endemic disease in sub-Saharan Africa and
many other parts of the developing world. It is caused by the African
Swine virus that primarily replicates in macrophages and monocytes
leading to the impairment of the structure and function of the immune
system of the infected organisms. Until now the African Swine epidemic
continues to spread despite all efforts to contain it. Thus, there is
an objective need for effective, safe and affordable preventive and
therapeutic approaches, in particular for effective vaccines, to
control and eventually eradicate this disease. Since the characteristic
feature of the African Swine virus is to impair the immune system and
to cause immune deficiencies in its hosts the development of vaccines
and other therapeutic approaches against the African Swine virus has
implications for other immune deficiencies or diseases. Several other
viruses are also known to cause immunodeficiency-like syndromes in
humans, including cytomegalovirus, Epstein Barr Virus
and others. Moreover, a series of cases of so-called "idiopathic"
immunodeficiencies have been documented that display
CD4+T-lymphocytopenia with opportunistic infections, but show no
evidence of HIV infection. Since antibodies for the African Swine virus
have been detected in humans, the possibility of human infection with
the African Swine virus exists and may thus far have escaped any systematic screening. Thus, any preventive and therapeutic approach to African Swine fever can have far-reaching implications to control immune deficiency conditions in humans."http://www.faqs.org/patents/app/20080207875
Detection of Novel Sequences Related to African Swine Fever Virus in Human Serum and Sewage.
Loh J, Zhao G, Presti RM, Holtz LR, Finkbeiner SR, Droit L, Villasana Z, Todd C, Pipas JM, Calgua B, Girones R, Wang D, Virgin HW.
Departments of Pathology & Immunology and Molecular Microbiology, Department of Medicine and Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri; Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Microbiology, Faculty of Biology, University of Barcelona, Barcelona, Spain.
"The family Asfarviridae contains only a single virus species, African swine fever virus (ASFV). ASFV is a viral agent with significant economic impact due to its devastating effects on populations of domesticated pigs during outbreaks, but has not been reported to infect humans. We report here the discovery of novel viral sequences in human serum and sewage which are clearly related to the Asfarvirus family, but highly divergent from ASFV. Detection of these sequences suggests that greater genetic diversity may exist among Asfarviruses than previously thought, and raises the possibility that human infection by Asfarviruses may occur."
http://www.ncbi.nlm.nih.gov/pubmed/19812170?dopt=AbstractDetection of Novel Sequences Related to African Swine Fever Virus in Human Serum and Sewage.
Loh J, Zhao G, Presti RM, Holtz LR, Finkbeiner SR, Droit L, Villasana Z, Todd C, Pipas JM, Calgua B, Girones R, Wang D, Virgin HW.
Departments of Pathology & Immunology and Molecular Microbiology, Department of Medicine and Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri; Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Microbiology, Faculty of Biology, University of Barcelona, Barcelona, Spain.
"The family Asfarviridae contains only a single virus species, African swine fever virus (ASFV). ASFV is a viral agent with significant economic impact due to its devastating effects on populations of domesticated pigs during outbreaks, but has not been reported to infect humans. We report here the discovery of novel viral sequences in human serum and sewage which are clearly related to the Asfarvirus family, but highly divergent from ASFV. Detection of these sequences suggests that greater genetic diversity may exist among Asfarviruses than previously thought, and raises the possibility that human infection by Asfarviruses may occur."
African Swine Fever Virus (Asfarviridae) sequences found in people with febrile illnesses
Abstract
Virus Identification in Unknown Tropical Febrile Illness Cases Using Deep Sequencing
Dengue virus is an emerging infectious agent that infects an estimated
50–100 million people annually worldwide, yet current diagnostic
practices cannot detect an etiologic pathogen in ∼40% of dengue-like
illnesses. Metagenomic approaches to pathogen detection, such as viral
microarrays and deep sequencing, are promising tools to address
emerging and non-diagnosable disease challenges. In this study, we
used the Virochip microarray and deep sequencing to characterize the
spectrum of viruses present in human sera from 123 Nicaraguan patients
presenting with dengue-like symptoms but testing negative for dengue
virus. We utilized a barcoding strategy to simultaneously deep
sequence multiple serum specimens, generating on average over 1
million reads per sample. We then implemented a stepwise bioinformatic
filtering pipeline to remove the majority of human and low-quality
sequences to improve the speed and accuracy of subsequent unbiased
database searches. By deep sequencing, we were able to detect virus
sequence in 37% (45/123) of previously negative cases. These included
13 cases with Human Herpesvirus 6 sequences. Other samples contained
sequences with similarity to sequences from viruses in the Herpesviridae, Flaviviridae, Circoviridae, Anelloviridae, Asfarviridae, and Parvoviridae
families. In some cases, the putative viral sequences were virtually
identical to known viruses, and in others they diverged, suggesting
that they may derive from novel viruses. These results demonstrate the
utility of unbiased metagenomic approaches in the detection of known
and divergent viruses in the study of tropical febrile illness.
Detection of African swine fever virus-like sequences in ponds in the Mississippi Delta through metagenomic sequencing
" . .. further study is needed to characterize their potential risks to both public health and agricultural development."http://link.springer.com/article/10.1007%2Fs11262-013-0878-2
ASF virus, adapted to grow in VERO cells, produces a strong cytopathic effect in human macrophages leading to cell destruction.
http://vir.sgmjournals.org/content/34/3/455.short
The African Swine Fever Virus Rights of Man
1. The right not to be lied to about whether African Swine Fever Virus is infecting human beings.
2. The right not to be lied to about how many different strains of African Swine Fever are capable of infecting humans.
3.
The right to know if African Swine Fever is being disguised in pigs by
giving it euphemisms of other diseases like PRRS and PEDV.
4. The right not to be lied to about the role of ASFV in AIDS.
5. The right not to be lied to about the role of ASFV in Chronic Fatigue Syndrome.
6. The right not to be lied to about the role of ASFV in Autism.
7.The right not to be lied to about the role of ASFV in Multiple Sclerosis.
8. The right not to be lied to about the role of ASFV in Brain Cancer.
9. The right not to be lied to about the role of ASFV in Heart Disease.
10. The right not to be lied to about the role of ASFV in Encephalitis.
11. The right not to be lied to about the role of ASFV in Cognitive Dysfunction.
12. The right not to be lied to about the role of ASFV in Drug Hypersensitivity Syndrome.
13. The right not to be lied to about the role of ASFV in Bone Marrow Suppression.
14. The right not to be lied to about the role of ASFV in Lymphadenopathy.
15. The right not to be lied to about the role of ASFV in Colitis.
16. The right not to be lied to about the role of ASFV in Endocrine Disorders.
17. The right not to be lied to about the role of ASFV in Liver Disease.
18. The right not to be lied to about the role of ASFV in Hodgkin's Lymphoma.
19. The right not to be lied to about the role of ASFV in Glioma.
20. The right not to be lied to about the role of ASFV in Cervical Cancer.
21. The right not to be lied to about the role of ASFV in Hypogammaglobulinemia.
22. The right not to be lied to about the role of ASFV in Optic Neuritis.
23. The right not to be lied to about the role of ASFV in Microangiopathy.
24. The right not to be lied to about the role of ASFV in Mononucleosis.
25. The right not to be lied to about the role of ASFV in Uveitis.
26. The right not to be lied to about the role of ASFV in Stevens-Johnson Syndrome.
27. The right not to be lied to about the role of ASFV in Rhomboencephalitis.
28. The right not to be lied to about the role of ASFV in Limbic Encephalitis.
29. The right not to be lied to about the role of ASFV in Encephalomyelitis
30. The right not to be lied to about the role of ASFV in Pneumonitis.
31. The right not to be lied to about the role of ASFV in GVHD.
32. The right not to be lied to about the role of ASFV in Ideopathic Pneumonia.
33. The right not to be lied to about the role of ASFV in Pediatric Adrenocortical Tumors
34. The right not to be lied to about the role of ASFV in the reactivation of endogenous retroviruses.
35. The right not to be lied to about the impact of ASFV on T-Cells.
36. The right not to be lied to about the impact of ASFV on B-Cells
37. The right not to be lied to about the impact of ASFV on Epithelial Cells.
38. The right not to be lied to about the the impact of ASFV on Natural Killer Cells.
39. The right not to be lied to about the the impact of HHV-6 on Dendritic Cells.
40. The right not to be lied to about the the impact of ASFV infection of the brain.
41. The right not to be lied to about the the impact of ASFV infection of the liver.
42. The right not to lied to about the ability of ASFV to affect cytokine production.
44. The right not be lied to about the relationship of ASFV to HHV-6, HHV-7 and HHV-8.
Subscribe to:
Posts (Atom)
Pages
- Home
- The Ten Big Stories about the African Swine Fever Threat to Human Health that Journalists in Western Europe are Missing
- The African Swine Fever Virus Rights of Man
- Potential harm of African Swine Fever to human hea...
- Was John Beldekas the first scientist to discover ...
- Preventive and Therapeutic Use of polypeptides fro...
- "ASF virus, adapted to grow in VERO cells, produce...
- What every Russian and European journalist should ...
- African Swine Fever Primarily Transmitted by Human...
- ASFV doesn't infect humans? Russian scientists hav...
- Meat contaminated with African Swine Fever is circ...
- Virologist: African swine fever virus may become d...
- Russian Scientist: ASF could become a human health...
- Russian Prisoners Were Fed Pork Contaminated with ...
- Detection of African swine fever virus-like sequen...
- African Swine Fever Virus (Asfarviridae) sequences...
- Detection of Novel Sequences Related to African Swine Fever Virus in Human Serum and Sewage.
The Afridan Swine Fever Report
African Swine Fever Univers... by on Scribd