Human infections with African Swine Fever may be the biggest threat to public health these days. ASFV is spreading in China, Eastern Europe, and Korea. It is on the border between Poland and Germany. Will Germany lead the way in exploring the threat of African Swine Fever to human health?

TheAfrican Swine Fever Novel Audiobook Excerpt

Monday, December 22, 2014

Is African Swine Fever the Real Cause of Kaposi's Sarcoma in Sardinia?


Sardinia Votes to Eradicate African Swine Fever 

http://www.thepigsite.com/swinenews/38523/sardinia-votes-to-eradicate-african-swine-fever


If Kaposi's Sarcoma incidence goes down in Sardinia after he eradication of ASFV, will it be more evidence that ASFV is the cause of Kaposi's Sarcoma. And that HHV-8 (the so-called "KS virus") is actually African Swine Fever Virus?


Are ASFV-infected Pigs the viral source of HHV-8 related Kaposi's Sarcoma in Sardinia? Is a ASFV-related Kaposi's Sarcoma epidemic possible in Russia where ASFV is spreading?

The world's highest incidence of Kaposi's sarcoma occurs in Sardinia (Reference) Is it possible that it is due to the fact that African Swine Fever Virus is endemic on the island? (Reference) One study suggests that the incidence of K.S. in northern Sardinia is highest in a countryside area where people have contact with animals. (Reference) Given the high prevalence of HHV-8,--the so-called K.S. herpes virus--in Sardinia (Reference) is it at all possible that HHV-8 may have been misclassified and actually is a human-adapted form of African Swine Fever Virus? (ASFV has been at least visually mistaken for another herpes virus, CMV, in the past.)
A number of experiments could be conducted to explore this hypothesis. In addition to a direct comparison of ASFV and HHV-8, pigs with African Swine Fever Virus could be tested for sequences of HHV-8. People with Kaposi's sarcoma could be tested for sequences of African Swine Fever, including new Asfaviridae sequences recently discovered. (Reference) A comparison of the K.S. lesions in humans and ASFV lesions in pigs might be in order.
Given that African Swine Fever is currently spreading in Russia and is now threatening Europe and China, (Reference) it would be useful to know whether people who are exposed to pigs with ASFV are at increased risk for HHV-8, Kaposi's sarcoma and the other pathologies associated with HHV-8. A study in sub-Saharan Africa where ASFV is endemic and HHV-8 is also endemic (Reference) might be useful. And areas of Russia where ASFV is spreading could be monitored closely for any signs of an increase of K.S. or HHV-8 infection and HHV-8 related pathologies.
HHV-8 is an emerging health problem. HHV-8-associated K.S. is a significant problem in AIDS patients. It may also be the key to Chronic Fatigue Syndrome. HHV-8 has been found in the cerebrospinal fluid of 50% of Chronic Fatigue Syndrome patients. (Reference) HHV-8 has been linked to type 2 diabetes. (Reference) HHV-8 has been detected in B-cells in Castleman's disease and primary effusion lymphoma. (Reference).
If HHV-8 is a form of ASFV, it is possible that pigs might constitute a useful animal model for the study of possible treatments for K.S. and other pathologies associated with HHV-8. And if there is any relationship between ASFV and HHV-8, people may have to be warned to take special precautions around pigs in areas where there are ASFV outbreaks. And countries where undercooked pork is consumed (like Ukraine where salo is a staple) may need to alert the public to cook all pork products thoroughly during ASFV epidemics.


Saturday, December 6, 2014

Host immunocompetence in ASF infected swine.

Inhibition of IL-2R and SLA class II expression on stimulated lymphocytes by a suppressor activity found in homogenates of African swine fever virus infected cultures

 http://springer.libdl.ir/article/10.1007/BF01315416

Friday, December 5, 2014

Monday, December 1, 2014

British pig farmers are rallying against PEDv and African Swine Fever, an industry survey shows.

http://www.thepigsite.com/swinenews/38347/british-react-to-disease-threat

RUSSIA - Veterinary authorities in the Russian States’ Customs Union are to discuss the threat and identification of African swine fever in meat products.

 http://www.themeatsite.com/meatnews/26269/african-swine-fever-in-meat-products-investigated#sthash.oDOyOOIb.dpuf


Russian Scientist: ASF could become a human health risk


"The African swine fever (ASF) virus, may in the future become dangerous for humans, according to the head of the Russian Epidemiology Service, Chief State Sanitary Doctor Gennady Onishchenko, at the press-conference in St. Petersburg. According to him almost all viruses from time to time go through mutation processes which can give them some additional functions."

 http://www.pigprogress.net/Health-Diseases/Outbreaks/2013/7/ASF-could-become-a-human-health-risk-1308047W/

 

 



Background on African Swine Fever Virus as a human pathogen:

"African Swine fever is an endemic disease in sub-Saharan Africa and many other parts of the developing world. It is caused by the African Swine virus that primarily replicates in macrophages and monocytes leading to the impairment of the structure and function of the immune system of the infected organisms. Until now the African Swine epidemic continues to spread despite all efforts to contain it. Thus, there is an objective need for effective, safe and affordable preventive and therapeutic approaches, in particular for effective vaccines, to control and eventually eradicate this disease. Since the characteristic feature of the African Swine virus is to impair the immune system and to cause immune deficiencies in its hosts the development of vaccines and other therapeutic approaches against the African Swine virus has implications for other immune deficiencies or diseases. Several other viruses are also known to cause immunodeficiency-like syndromes in humans, including cytomegalovirus, Epstein Barr Virus and others. Moreover, a series of cases of so-called "idiopathic" immunodeficiencies have been documented that display CD4+T-lymphocytopenia with opportunistic infections, but show no evidence of HIV infection. Since antibodies for the African Swine virus have been detected in humans, the possibility of human infection with the African Swine virus exists and may thus far have escaped any systematic screening. Thus, any preventive and therapeutic approach to African Swine fever can have far-reaching implications to control immune deficiency conditions in humans."http://www.faqs.org/patents/app/20080207875

Detection of Novel Sequences Related to African Swine Fever Virus in Human Serum and Sewage.


Loh J, Zhao G, Presti RM, Holtz LR, Finkbeiner SR, Droit L, Villasana Z, Todd C, Pipas JM, Calgua B, Girones R, Wang D, Virgin HW.

Departments of Pathology & Immunology and Molecular Microbiology, Department of Medicine and Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri; Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Microbiology, Faculty of Biology, University of Barcelona, Barcelona, Spain.

"The family Asfarviridae contains only a single virus species, African swine fever virus (ASFV). ASFV is a viral agent with significant economic impact due to its devastating effects on populations of domesticated pigs during outbreaks, but has not been reported to infect humans. We report here the discovery of novel viral sequences in human serum and sewage which are clearly related to the Asfarvirus family, but highly divergent from ASFV. Detection of these sequences suggests that greater genetic diversity may exist among Asfarviruses than previously thought, and raises the possibility that human infection by Asfarviruses may occur."
http://www.ncbi.nlm.nih.gov/pubmed/19812170?dopt=Abstract

African Swine Fever Virus (Asfarviridae) sequences found in people with febrile illnesses

Abstract
Virus Identification in Unknown Tropical Febrile Illness Cases Using Deep Sequencing
Dengue virus is an emerging infectious agent that infects an estimated 50–100 million people annually worldwide, yet current diagnostic practices cannot detect an etiologic pathogen in ∼40% of dengue-like illnesses. Metagenomic approaches to pathogen detection, such as viral microarrays and deep sequencing, are promising tools to address emerging and non-diagnosable disease challenges. In this study, we used the Virochip microarray and deep sequencing to characterize the spectrum of viruses present in human sera from 123 Nicaraguan patients presenting with dengue-like symptoms but testing negative for dengue virus. We utilized a barcoding strategy to simultaneously deep sequence multiple serum specimens, generating on average over 1 million reads per sample. We then implemented a stepwise bioinformatic filtering pipeline to remove the majority of human and low-quality sequences to improve the speed and accuracy of subsequent unbiased database searches. By deep sequencing, we were able to detect virus sequence in 37% (45/123) of previously negative cases. These included 13 cases with Human Herpesvirus 6 sequences. Other samples contained sequences with similarity to sequences from viruses in the Herpesviridae, Flaviviridae, Circoviridae, Anelloviridae, Asfarviridae, and Parvoviridae families. In some cases, the putative viral sequences were virtually identical to known viruses, and in others they diverged, suggesting that they may derive from novel viruses. These results demonstrate the utility of unbiased metagenomic approaches in the detection of known and divergent viruses in the study of tropical febrile illness.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3274504/

Detection of African swine fever virus-like sequences in ponds in the Mississippi Delta through metagenomic sequencing

" . .. further study is needed to characterize their potential risks to both public health and agricultural development."

http://link.springer.com/article/10.1007%2Fs11262-013-0878-2

ASF virus, adapted to grow in VERO cells, produces a strong cytopathic effect in human macrophages leading to cell destruction.

http://vir.sgmjournals.org/content/34/3/455.short

Thursday, November 27, 2014

Comparison of immunoperoxidase monolayer assay, polymerase chain reaction and haemadsorption tests in the detection of African swine fever virus in cell cultures using Ugandan isolates

http://www.academicjournals.org/journal/JGMV/article-abstract/50671A948774

"This study makes the first attempt to use IPMA and haemadsorption assay for the detection of ASF virus and categorization of the African swine fever virus (ASFv) field isolates into haemadsorbing and non-heamadsorbing in Uganda, respectively"

Tuesday, November 25, 2014

Finland considers drastic measures to stop entry of African swine fever pest

http://www.shanghaidaily.com/article/article_xinhua.aspx?id=254756

"Finland is considering drastic measures to stop the entry of the African swine fever pest into Finland in order to safeguard continued exports of pork.
The existence of wild boars in Finland is a risk and the Permanent Secretary of the Ministry of Agriculture Jaana Husu-Kallio told national broadcaster Yle on Tuesday that eradication of the Finnish wild boar population is not ruled out."



Russian Scientist: ASF could become a human health risk


"The African swine fever (ASF) virus, may in the future become dangerous for humans, according to the head of the Russian Epidemiology Service, Chief State Sanitary Doctor Gennady Onishchenko, at the press-conference in St. Petersburg. According to him almost all viruses from time to time go through mutation processes which can give them some additional functions."

 http://www.pigprogress.net/Health-Diseases/Outbreaks/2013/7/ASF-could-become-a-human-health-risk-1308047W/

 

 



Background on African Swine Fever Virus as a human pathogen:

"African Swine fever is an endemic disease in sub-Saharan Africa and many other parts of the developing world. It is caused by the African Swine virus that primarily replicates in macrophages and monocytes leading to the impairment of the structure and function of the immune system of the infected organisms. Until now the African Swine epidemic continues to spread despite all efforts to contain it. Thus, there is an objective need for effective, safe and affordable preventive and therapeutic approaches, in particular for effective vaccines, to control and eventually eradicate this disease. Since the characteristic feature of the African Swine virus is to impair the immune system and to cause immune deficiencies in its hosts the development of vaccines and other therapeutic approaches against the African Swine virus has implications for other immune deficiencies or diseases. Several other viruses are also known to cause immunodeficiency-like syndromes in humans, including cytomegalovirus, Epstein Barr Virus and others. Moreover, a series of cases of so-called "idiopathic" immunodeficiencies have been documented that display CD4+T-lymphocytopenia with opportunistic infections, but show no evidence of HIV infection. Since antibodies for the African Swine virus have been detected in humans, the possibility of human infection with the African Swine virus exists and may thus far have escaped any systematic screening. Thus, any preventive and therapeutic approach to African Swine fever can have far-reaching implications to control immune deficiency conditions in humans."http://www.faqs.org/patents/app/20080207875

Detection of Novel Sequences Related to African Swine Fever Virus in Human Serum and Sewage.


Loh J, Zhao G, Presti RM, Holtz LR, Finkbeiner SR, Droit L, Villasana Z, Todd C, Pipas JM, Calgua B, Girones R, Wang D, Virgin HW.

Departments of Pathology & Immunology and Molecular Microbiology, Department of Medicine and Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri; Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Microbiology, Faculty of Biology, University of Barcelona, Barcelona, Spain.

"The family Asfarviridae contains only a single virus species, African swine fever virus (ASFV). ASFV is a viral agent with significant economic impact due to its devastating effects on populations of domesticated pigs during outbreaks, but has not been reported to infect humans. We report here the discovery of novel viral sequences in human serum and sewage which are clearly related to the Asfarvirus family, but highly divergent from ASFV. Detection of these sequences suggests that greater genetic diversity may exist among Asfarviruses than previously thought, and raises the possibility that human infection by Asfarviruses may occur."
http://www.ncbi.nlm.nih.gov/pubmed/19812170?dopt=Abstract

African Swine Fever Virus (Asfarviridae) sequences found in people with febrile illnesses

Abstract
Virus Identification in Unknown Tropical Febrile Illness Cases Using Deep Sequencing
Dengue virus is an emerging infectious agent that infects an estimated 50–100 million people annually worldwide, yet current diagnostic practices cannot detect an etiologic pathogen in ∼40% of dengue-like illnesses. Metagenomic approaches to pathogen detection, such as viral microarrays and deep sequencing, are promising tools to address emerging and non-diagnosable disease challenges. In this study, we used the Virochip microarray and deep sequencing to characterize the spectrum of viruses present in human sera from 123 Nicaraguan patients presenting with dengue-like symptoms but testing negative for dengue virus. We utilized a barcoding strategy to simultaneously deep sequence multiple serum specimens, generating on average over 1 million reads per sample. We then implemented a stepwise bioinformatic filtering pipeline to remove the majority of human and low-quality sequences to improve the speed and accuracy of subsequent unbiased database searches. By deep sequencing, we were able to detect virus sequence in 37% (45/123) of previously negative cases. These included 13 cases with Human Herpesvirus 6 sequences. Other samples contained sequences with similarity to sequences from viruses in the Herpesviridae, Flaviviridae, Circoviridae, Anelloviridae, Asfarviridae, and Parvoviridae families. In some cases, the putative viral sequences were virtually identical to known viruses, and in others they diverged, suggesting that they may derive from novel viruses. These results demonstrate the utility of unbiased metagenomic approaches in the detection of known and divergent viruses in the study of tropical febrile illness.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3274504/

Detection of African swine fever virus-like sequences in ponds in the Mississippi Delta through metagenomic sequencing

" . .. further study is needed to characterize their potential risks to both public health and agricultural development."

http://link.springer.com/article/10.1007%2Fs11262-013-0878-2

ASF virus, adapted to grow in VERO cells, produces a strong cytopathic effect in human macrophages leading to cell destruction.

http://vir.sgmjournals.org/content/34/3/455.short

Friday, November 7, 2014

Epidemiology of African Swine Fever in Poland

 African swine fever (ASF) at present poses the biggest threat for pig production in Eastern and Central Europe. The present epidemic in this region of Europe started in 2007 in Poti, Georgian, Black Sea harbor, from where the virus spread to other territories of Georgia, and next, to Armenia, Russian Federation, Belarus, Ukraine, Lithuania, Latvia, Estonia and Poland.

http://www.pig333.com/what_the_experts_say/epidemiology-of-african-swine-fever-in-poland_9390/

Friday, October 10, 2014

German Vets Tighten Resolve to Keep out African Swine Fever

http://www.thepigsite.com/swinenews/37863/german-vets-tighten-resolve-to-keep-out-african-swine-fever

What every German journalist, scientist, and doctor  should know about African Swine Fever Virus


Russian Scientist: ASF could become a human health risk


"The African swine fever (ASF) virus, may in the future become dangerous for humans, according to the head of the Russian Epidemiology Service, Chief State Sanitary Doctor Gennady Onishchenko, at the press-conference in St. Petersburg. According to him almost all viruses from time to time go through mutation processes which can give them some additional functions."

 http://www.pigprogress.net/Health-Diseases/Outbreaks/2013/7/ASF-could-become-a-human-health-risk-1308047W/

 

 



Background on African Swine Fever Virus as a human pathogen:

"African Swine fever is an endemic disease in sub-Saharan Africa and many other parts of the developing world. It is caused by the African Swine virus that primarily replicates in macrophages and monocytes leading to the impairment of the structure and function of the immune system of the infected organisms. Until now the African Swine epidemic continues to spread despite all efforts to contain it. Thus, there is an objective need for effective, safe and affordable preventive and therapeutic approaches, in particular for effective vaccines, to control and eventually eradicate this disease. Since the characteristic feature of the African Swine virus is to impair the immune system and to cause immune deficiencies in its hosts the development of vaccines and other therapeutic approaches against the African Swine virus has implications for other immune deficiencies or diseases. Several other viruses are also known to cause immunodeficiency-like syndromes in humans, including cytomegalovirus, Epstein Barr Virus and others. Moreover, a series of cases of so-called "idiopathic" immunodeficiencies have been documented that display CD4+T-lymphocytopenia with opportunistic infections, but show no evidence of HIV infection. Since antibodies for the African Swine virus have been detected in humans, the possibility of human infection with the African Swine virus exists and may thus far have escaped any systematic screening. Thus, any preventive and therapeutic approach to African Swine fever can have far-reaching implications to control immune deficiency conditions in humans."http://www.faqs.org/patents/app/20080207875

Detection of Novel Sequences Related to African Swine Fever Virus in Human Serum and Sewage.


Loh J, Zhao G, Presti RM, Holtz LR, Finkbeiner SR, Droit L, Villasana Z, Todd C, Pipas JM, Calgua B, Girones R, Wang D, Virgin HW.

Departments of Pathology & Immunology and Molecular Microbiology, Department of Medicine and Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri; Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Microbiology, Faculty of Biology, University of Barcelona, Barcelona, Spain.

"The family Asfarviridae contains only a single virus species, African swine fever virus (ASFV). ASFV is a viral agent with significant economic impact due to its devastating effects on populations of domesticated pigs during outbreaks, but has not been reported to infect humans. We report here the discovery of novel viral sequences in human serum and sewage which are clearly related to the Asfarvirus family, but highly divergent from ASFV. Detection of these sequences suggests that greater genetic diversity may exist among Asfarviruses than previously thought, and raises the possibility that human infection by Asfarviruses may occur."
http://www.ncbi.nlm.nih.gov/pubmed/19812170?dopt=Abstract

African Swine Fever Virus (Asfarviridae) sequences found in people with febrile illnesses

Abstract
Virus Identification in Unknown Tropical Febrile Illness Cases Using Deep Sequencing
Dengue virus is an emerging infectious agent that infects an estimated 50–100 million people annually worldwide, yet current diagnostic practices cannot detect an etiologic pathogen in ∼40% of dengue-like illnesses. Metagenomic approaches to pathogen detection, such as viral microarrays and deep sequencing, are promising tools to address emerging and non-diagnosable disease challenges. In this study, we used the Virochip microarray and deep sequencing to characterize the spectrum of viruses present in human sera from 123 Nicaraguan patients presenting with dengue-like symptoms but testing negative for dengue virus. We utilized a barcoding strategy to simultaneously deep sequence multiple serum specimens, generating on average over 1 million reads per sample. We then implemented a stepwise bioinformatic filtering pipeline to remove the majority of human and low-quality sequences to improve the speed and accuracy of subsequent unbiased database searches. By deep sequencing, we were able to detect virus sequence in 37% (45/123) of previously negative cases. These included 13 cases with Human Herpesvirus 6 sequences. Other samples contained sequences with similarity to sequences from viruses in the Herpesviridae, Flaviviridae, Circoviridae, Anelloviridae, Asfarviridae, and Parvoviridae families. In some cases, the putative viral sequences were virtually identical to known viruses, and in others they diverged, suggesting that they may derive from novel viruses. These results demonstrate the utility of unbiased metagenomic approaches in the detection of known and divergent viruses in the study of tropical febrile illness.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3274504/

Detection of African swine fever virus-like sequences in ponds in the Mississippi Delta through metagenomic sequencing

" . .. further study is needed to characterize their potential risks to both public health and agricultural development."

http://link.springer.com/article/10.1007%2Fs11262-013-0878-2

ASF virus, adapted to grow in VERO cells, produces a strong cytopathic effect in human macrophages leading to cell destruction.

http://vir.sgmjournals.org/content/34/3/455.short

Friday, September 26, 2014

Dynamics of African swine fever virus shedding and excretion in domestic pigs infected by intramuscular inoculation and contact transmission

http://7thspace.com/headlines/488421/dynamics_of_african_swine_fever_virus_shedding_and_excretion_in_domestic_pigs_infected_by_intramuscular_inoculation_and_contact_transmission.html

Infectious ASFV was first isolated in blood among the inoculated pigs by day 3, and then chronologically among the direct and indirect contact pigs, by day 10 and 13, respectively. Close to the onset of clinical signs, higher ASFV titres were found in blood compared with nasal and rectal fluid samples among all pigs.

No infectious ASFV was isolated in oral fluid samples although ASFV genome copies were detected. Only one animal developed antibodies starting after 12 days post-inoculation.

Monday, September 15, 2014

Thursday, August 14, 2014

Thirteen New Outbreaks of African Swine Fever in Lativa

What Every Serious Journalist in Latvia Should Know about African Swine Fever:

Background on African Swine Fever Virus as a human pathogen:

"African Swine fever is an endemic disease in sub-Saharan Africa and many other parts of the developing world. It is caused by the African Swine virus that primarily replicates in macrophages and monocytes leading to the impairment of the structure and function of the immune system of the infected organisms. Until now the African Swine epidemic continues to spread despite all efforts to contain it. Thus, there is an objective need for effective, safe and affordable preventive and therapeutic approaches, in particular for effective vaccines, to control and eventually eradicate this disease. Since the characteristic feature of the African Swine virus is to impair the immune system and to cause immune deficiencies in its hosts the development of vaccines and other therapeutic approaches against the African Swine virus has implications for other immune deficiencies or diseases. Several other viruses are also known to cause immunodeficiency-like syndromes in humans, including cytomegalovirus, Epstein Barr Virus and others. Moreover, a series of cases of so-called "idiopathic" immunodeficiencies have been documented that display CD4+T-lymphocytopenia with opportunistic infections, but show no evidence of HIV infection. Since antibodies for the African Swine virus have been detected in humans, the possibility of human infection with the African Swine virus exists and may thus far have escaped any systematic screening. Thus, any preventive and therapeutic approach to African Swine fever can have far-reaching implications to control immune deficiency conditions in humans."http://www.faqs.org/patents/app/20080207875

Detection of Novel Sequences Related to African Swine Fever Virus in Human Serum and Sewage.


Loh J, Zhao G, Presti RM, Holtz LR, Finkbeiner SR, Droit L, Villasana Z, Todd C, Pipas JM, Calgua B, Girones R, Wang D, Virgin HW.

Departments of Pathology & Immunology and Molecular Microbiology, Department of Medicine and Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri; Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Microbiology, Faculty of Biology, University of Barcelona, Barcelona, Spain.

"The family Asfarviridae contains only a single virus species, African swine fever virus (ASFV). ASFV is a viral agent with significant economic impact due to its devastating effects on populations of domesticated pigs during outbreaks, but has not been reported to infect humans. We report here the discovery of novel viral sequences in human serum and sewage which are clearly related to the Asfarvirus family, but highly divergent from ASFV. Detection of these sequences suggests that greater genetic diversity may exist among Asfarviruses than previously thought, and raises the possibility that human infection by Asfarviruses may occur."
http://www.ncbi.nlm.nih.gov/pubmed/19812170?dopt=Abstract

African Swine Fever Virus (Asfarviridae) sequences found in people with febrile illnesses

Abstract
Virus Identification in Unknown Tropical Febrile Illness Cases Using Deep Sequencing
Dengue virus is an emerging infectious agent that infects an estimated 50–100 million people annually worldwide, yet current diagnostic practices cannot detect an etiologic pathogen in ∼40% of dengue-like illnesses. Metagenomic approaches to pathogen detection, such as viral microarrays and deep sequencing, are promising tools to address emerging and non-diagnosable disease challenges. In this study, we used the Virochip microarray and deep sequencing to characterize the spectrum of viruses present in human sera from 123 Nicaraguan patients presenting with dengue-like symptoms but testing negative for dengue virus. We utilized a barcoding strategy to simultaneously deep sequence multiple serum specimens, generating on average over 1 million reads per sample. We then implemented a stepwise bioinformatic filtering pipeline to remove the majority of human and low-quality sequences to improve the speed and accuracy of subsequent unbiased database searches. By deep sequencing, we were able to detect virus sequence in 37% (45/123) of previously negative cases. These included 13 cases with Human Herpesvirus 6 sequences. Other samples contained sequences with similarity to sequences from viruses in the Herpesviridae, Flaviviridae, Circoviridae, Anelloviridae, Asfarviridae, and Parvoviridae families. In some cases, the putative viral sequences were virtually identical to known viruses, and in others they diverged, suggesting that they may derive from novel viruses. These results demonstrate the utility of unbiased metagenomic approaches in the detection of known and divergent viruses in the study of tropical febrile illness.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3274504/

Detection of African swine fever virus-like sequences in ponds in the Mississippi Delta through metagenomic sequencing

" . .. further study is needed to characterize their potential risks to both public health and agricultural development."

http://link.springer.com/article/10.1007%2Fs11262-013-0878-2

ASF virus, adapted to grow in VERO cells, produces a strong cytopathic effect in human macrophages leading to cell destruction.

http://vir.sgmjournals.org/content/34/3/455.short

Monday, August 11, 2014

What every journalist in Poland should know about African Swine Fever Virus.

Background on African Swine Fever Virus as a human pathogen:

"African Swine fever is an endemic disease in sub-Saharan Africa and many other parts of the developing world. It is caused by the African Swine virus that primarily replicates in macrophages and monocytes leading to the impairment of the structure and function of the immune system of the infected organisms. Until now the African Swine epidemic continues to spread despite all efforts to contain it. Thus, there is an objective need for effective, safe and affordable preventive and therapeutic approaches, in particular for effective vaccines, to control and eventually eradicate this disease. Since the characteristic feature of the African Swine virus is to impair the immune system and to cause immune deficiencies in its hosts the development of vaccines and other therapeutic approaches against the African Swine virus has implications for other immune deficiencies or diseases. Several other viruses are also known to cause immunodeficiency-like syndromes in humans, including cytomegalovirus, Epstein Barr Virus and others. Moreover, a series of cases of so-called "idiopathic" immunodeficiencies have been documented that display CD4+T-lymphocytopenia with opportunistic infections, but show no evidence of HIV infection. Since antibodies for the African Swine virus have been detected in humans, the possibility of human infection with the African Swine virus exists and may thus far have escaped any systematic screening. Thus, any preventive and therapeutic approach to African Swine fever can have far-reaching implications to control immune deficiency conditions in humans."http://www.faqs.org/patents/app/20080207875

Detection of Novel Sequences Related to African Swine Fever Virus in Human Serum and Sewage.


Loh J, Zhao G, Presti RM, Holtz LR, Finkbeiner SR, Droit L, Villasana Z, Todd C, Pipas JM, Calgua B, Girones R, Wang D, Virgin HW.

Departments of Pathology & Immunology and Molecular Microbiology, Department of Medicine and Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri; Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Microbiology, Faculty of Biology, University of Barcelona, Barcelona, Spain.

"The family Asfarviridae contains only a single virus species, African swine fever virus (ASFV). ASFV is a viral agent with significant economic impact due to its devastating effects on populations of domesticated pigs during outbreaks, but has not been reported to infect humans. We report here the discovery of novel viral sequences in human serum and sewage which are clearly related to the Asfarvirus family, but highly divergent from ASFV. Detection of these sequences suggests that greater genetic diversity may exist among Asfarviruses than previously thought, and raises the possibility that human infection by Asfarviruses may occur."
http://www.ncbi.nlm.nih.gov/pubmed/19812170?dopt=Abstract

African Swine Fever Virus (Asfarviridae) sequences found in people with febrile illnesses

Abstract
Virus Identification in Unknown Tropical Febrile Illness Cases Using Deep Sequencing
Dengue virus is an emerging infectious agent that infects an estimated 50–100 million people annually worldwide, yet current diagnostic practices cannot detect an etiologic pathogen in ∼40% of dengue-like illnesses. Metagenomic approaches to pathogen detection, such as viral microarrays and deep sequencing, are promising tools to address emerging and non-diagnosable disease challenges. In this study, we used the Virochip microarray and deep sequencing to characterize the spectrum of viruses present in human sera from 123 Nicaraguan patients presenting with dengue-like symptoms but testing negative for dengue virus. We utilized a barcoding strategy to simultaneously deep sequence multiple serum specimens, generating on average over 1 million reads per sample. We then implemented a stepwise bioinformatic filtering pipeline to remove the majority of human and low-quality sequences to improve the speed and accuracy of subsequent unbiased database searches. By deep sequencing, we were able to detect virus sequence in 37% (45/123) of previously negative cases. These included 13 cases with Human Herpesvirus 6 sequences. Other samples contained sequences with similarity to sequences from viruses in the Herpesviridae, Flaviviridae, Circoviridae, Anelloviridae, Asfarviridae, and Parvoviridae families. In some cases, the putative viral sequences were virtually identical to known viruses, and in others they diverged, suggesting that they may derive from novel viruses. These results demonstrate the utility of unbiased metagenomic approaches in the detection of known and divergent viruses in the study of tropical febrile illness.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3274504/

Detection of African swine fever virus-like sequences in ponds in the Mississippi Delta through metagenomic sequencing

" . .. further study is needed to characterize their potential risks to both public health and agricultural development."

http://link.springer.com/article/10.1007%2Fs11262-013-0878-2

ASF virus, adapted to grow in VERO cells, produces a strong cytopathic effect in human macrophages leading to cell destruction.

http://vir.sgmjournals.org/content/34/3/455.short

Saturday, July 12, 2014

Switzerland halts pork imports over swine fever fears

http://www.nation.lk/edition/news-features/item/31231-switzerland-halts-pork-imports-over-swine-fever-fears.html



Switzerland halts pork imports over swine fever fears - See more at: http://www.nation.lk/edition/news-features/item/31231-switzerland-halts-pork-imports-over-swine-fever-fears.html#sthash.TztDBuju.dpuf
Switzerland halts pork imports over swine fever fears - See more at: http://www.nation.lk/edition/news-features/item/31231-switzerland-halts-pork-imports-over-swine-fever-fears.html#sthash.TztDBuju.dpuf

Thursday, July 10, 2014

Tuesday, July 8, 2014

African swine fever confirmed at Poland-Belarus border

http://en.itar-tass.com/economy/739522

What every Russian and European journalist should know about African Swine Fever Virus


Russian Scientist: ASF could become a human health risk


"The African swine fever (ASF) virus, may in the future become dangerous for humans, according to the head of the Russian Epidemiology Service, Chief State Sanitary Doctor Gennady Onishchenko, at the press-conference in St. Petersburg. According to him almost all viruses from time to time go through mutation processes which can give them some additional functions."

 http://www.pigprogress.net/Health-Diseases/Outbreaks/2013/7/ASF-could-become-a-human-health-risk-1308047W/

 

 



Background on African Swine Fever Virus as a human pathogen:

"African Swine fever is an endemic disease in sub-Saharan Africa and many other parts of the developing world. It is caused by the African Swine virus that primarily replicates in macrophages and monocytes leading to the impairment of the structure and function of the immune system of the infected organisms. Until now the African Swine epidemic continues to spread despite all efforts to contain it. Thus, there is an objective need for effective, safe and affordable preventive and therapeutic approaches, in particular for effective vaccines, to control and eventually eradicate this disease. Since the characteristic feature of the African Swine virus is to impair the immune system and to cause immune deficiencies in its hosts the development of vaccines and other therapeutic approaches against the African Swine virus has implications for other immune deficiencies or diseases. Several other viruses are also known to cause immunodeficiency-like syndromes in humans, including cytomegalovirus, Epstein Barr Virus and others. Moreover, a series of cases of so-called "idiopathic" immunodeficiencies have been documented that display CD4+T-lymphocytopenia with opportunistic infections, but show no evidence of HIV infection. Since antibodies for the African Swine virus have been detected in humans, the possibility of human infection with the African Swine virus exists and may thus far have escaped any systematic screening. Thus, any preventive and therapeutic approach to African Swine fever can have far-reaching implications to control immune deficiency conditions in humans."http://www.faqs.org/patents/app/20080207875

Detection of Novel Sequences Related to African Swine Fever Virus in Human Serum and Sewage.


Loh J, Zhao G, Presti RM, Holtz LR, Finkbeiner SR, Droit L, Villasana Z, Todd C, Pipas JM, Calgua B, Girones R, Wang D, Virgin HW.

Departments of Pathology & Immunology and Molecular Microbiology, Department of Medicine and Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri; Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Microbiology, Faculty of Biology, University of Barcelona, Barcelona, Spain.

"The family Asfarviridae contains only a single virus species, African swine fever virus (ASFV). ASFV is a viral agent with significant economic impact due to its devastating effects on populations of domesticated pigs during outbreaks, but has not been reported to infect humans. We report here the discovery of novel viral sequences in human serum and sewage which are clearly related to the Asfarvirus family, but highly divergent from ASFV. Detection of these sequences suggests that greater genetic diversity may exist among Asfarviruses than previously thought, and raises the possibility that human infection by Asfarviruses may occur."
http://www.ncbi.nlm.nih.gov/pubmed/19812170?dopt=Abstract

African Swine Fever Virus (Asfarviridae) sequences found in people with febrile illnesses

Abstract
Virus Identification in Unknown Tropical Febrile Illness Cases Using Deep Sequencing
Dengue virus is an emerging infectious agent that infects an estimated 50–100 million people annually worldwide, yet current diagnostic practices cannot detect an etiologic pathogen in ∼40% of dengue-like illnesses. Metagenomic approaches to pathogen detection, such as viral microarrays and deep sequencing, are promising tools to address emerging and non-diagnosable disease challenges. In this study, we used the Virochip microarray and deep sequencing to characterize the spectrum of viruses present in human sera from 123 Nicaraguan patients presenting with dengue-like symptoms but testing negative for dengue virus. We utilized a barcoding strategy to simultaneously deep sequence multiple serum specimens, generating on average over 1 million reads per sample. We then implemented a stepwise bioinformatic filtering pipeline to remove the majority of human and low-quality sequences to improve the speed and accuracy of subsequent unbiased database searches. By deep sequencing, we were able to detect virus sequence in 37% (45/123) of previously negative cases. These included 13 cases with Human Herpesvirus 6 sequences. Other samples contained sequences with similarity to sequences from viruses in the Herpesviridae, Flaviviridae, Circoviridae, Anelloviridae, Asfarviridae, and Parvoviridae families. In some cases, the putative viral sequences were virtually identical to known viruses, and in others they diverged, suggesting that they may derive from novel viruses. These results demonstrate the utility of unbiased metagenomic approaches in the detection of known and divergent viruses in the study of tropical febrile illness.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3274504/

Detection of African swine fever virus-like sequences in ponds in the Mississippi Delta through metagenomic sequencing

" . .. further study is needed to characterize their potential risks to both public health and agricultural development."

http://link.springer.com/article/10.1007%2Fs11262-013-0878-2

ASF virus, adapted to grow in VERO cells, produces a strong cytopathic effect in human macrophages leading to cell destruction.

http://vir.sgmjournals.org/content/34/3/455.short