Human infections with African Swine Fever may be the biggest threat to public health these days. ASFV is spreading in China, Eastern Europe, and Korea. It is on the border between Poland and Germany. Will Germany lead the way in exploring the threat of African Swine Fever to human health?

TheAfrican Swine Fever Novel Audiobook Excerpt

Friday, August 30, 2013

How soon will African Swine Fever break out in Poland?

It might already be there! Give how quickly and widely it has spread in adjoining countries, the odds are that it is already in ticks and wild boar in Poland.


Poland wants EU to fund fence along Belarusian border over African swine fever

 http://naviny.by/rubrics/english/2013/07/18/ic_articles_259_182385

 

 "On a relative risk scale with six categories from negligible to very high, five European Union countries were estimated at high (France, Germany, Italy and United Kingdom) or moderate (Spain) risk of African swine fever release, five countries were at high risk of exposure if African swine fever were released (France, Italy, Poland, Romania and Spain) and ten countries had a moderate exposure risk (Austria, Bulgaria, Germany, Greece, Hungary, Latvia, Lithuania, Portugal, Sweden and United Kingdom). The approach presented here and results obtained for African swine fever provide a basis for the enhancement of risk-based surveillance systems and disease prevention programmes in the European Union."

In Poland Chopin Airport joins African swine fever information campaign

"As recommended by the Chief Veterinary Officer, steps have been taken at Warsaw Chopin Airport to reduce the risk of African swine fever (ASF) spreading to Poland

http://www.lotnisko-chopina.pl/en/airport/about-the-airport/pressroom/news/2013/8/chopin-airport-joins-african-swine-fever-information-campaign

Background on African Swine Fever Virus as a human pathogen:

"African Swine fever is an endemic disease in sub-Saharan Africa and many other parts of the developing world. It is caused by the African Swine virus that primarily replicates in macrophages and monocytes leading to the impairment of the structure and function of the immune system of the infected organisms. Until now the African Swine epidemic continues to spread despite all efforts to contain it. Thus, there is an objective need for effective, safe and affordable preventive and therapeutic approaches, in particular for effective vaccines, to control and eventually eradicate this disease. Since the characteristic feature of the African Swine virus is to impair the immune system and to cause immune deficiencies in its hosts the development of vaccines and other therapeutic approaches against the African Swine virus has implications for other immune deficiencies or diseases. Several other viruses are also known to cause immunodeficiency-like syndromes in humans, including cytomegalovirus, Epstein Barr Virus and others. Moreover, a series of cases of so-called "idiopathic" immunodeficiencies have been documented that display CD4+T-lymphocytopenia with opportunistic infections, but show no evidence of HIV infection. Since antibodies for the African Swine virus have been detected in humans, the possibility of human infection with the African Swine virus exists and may thus far have escaped any systematic screening. Thus, any preventive and therapeutic approach to African Swine fever can have far-reaching implications to control immune deficiency conditions in humans."http://www.faqs.org/patents/app/20080207875

Detection of Novel Sequences Related to African Swine Fever Virus in Human Serum and Sewage.


Loh J, Zhao G, Presti RM, Holtz LR, Finkbeiner SR, Droit L, Villasana Z, Todd C, Pipas JM, Calgua B, Girones R, Wang D, Virgin HW.

Departments of Pathology & Immunology and Molecular Microbiology, Department of Medicine and Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri; Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Microbiology, Faculty of Biology, University of Barcelona, Barcelona, Spain.

"The family Asfarviridae contains only a single virus species, African swine fever virus (ASFV). ASFV is a viral agent with significant economic impact due to its devastating effects on populations of domesticated pigs during outbreaks, but has not been reported to infect humans. We report here the discovery of novel viral sequences in human serum and sewage which are clearly related to the Asfarvirus family, but highly divergent from ASFV. Detection of these sequences suggests that greater genetic diversity may exist among Asfarviruses than previously thought, and raises the possibility that human infection by Asfarviruses may occur."
http://www.ncbi.nlm.nih.gov/pubmed/19812170?dopt=Abstract

African Swine Fever Virus (Asfarviridae) sequences found in people with febrile illnesses

Abstract
Virus Identification in Unknown Tropical Febrile Illness Cases Using Deep Sequencing
Dengue virus is an emerging infectious agent that infects an estimated 50–100 million people annually worldwide, yet current diagnostic practices cannot detect an etiologic pathogen in ∼40% of dengue-like illnesses. Metagenomic approaches to pathogen detection, such as viral microarrays and deep sequencing, are promising tools to address emerging and non-diagnosable disease challenges. In this study, we used the Virochip microarray and deep sequencing to characterize the spectrum of viruses present in human sera from 123 Nicaraguan patients presenting with dengue-like symptoms but testing negative for dengue virus. We utilized a barcoding strategy to simultaneously deep sequence multiple serum specimens, generating on average over 1 million reads per sample. We then implemented a stepwise bioinformatic filtering pipeline to remove the majority of human and low-quality sequences to improve the speed and accuracy of subsequent unbiased database searches. By deep sequencing, we were able to detect virus sequence in 37% (45/123) of previously negative cases. These included 13 cases with Human Herpesvirus 6 sequences. Other samples contained sequences with similarity to sequences from viruses in the Herpesviridae, Flaviviridae, Circoviridae, Anelloviridae, Asfarviridae, and Parvoviridae families. In some cases, the putative viral sequences were virtually identical to known viruses, and in others they diverged, suggesting that they may derive from novel viruses. These results demonstrate the utility of unbiased metagenomic approaches in the detection of known and divergent viruses in the study of tropical febrile illness.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3274504/

Detection of African swine fever virus-like sequences in ponds in the Mississippi Delta through metagenomic sequencing

" . .. further study is needed to characterize their potential risks to both public health and agricultural development."

http://link.springer.com/article/10.1007%2Fs11262-013-0878-2

ASF virus, adapted to grow in VERO cells, produces a strong cytopathic effect in human macrophages leading to cell destruction.

http://vir.sgmjournals.org/content/34/3/455.short 

"Belarusan Prime Minister Mikhail Miasnikovich emphasized the need to raise the public's awareness of the problem with the African swine fever and justify precautions against the disease."

http://eurobelarus.info/en/news/society/2013/08/30/our-neighbours-should-realize-we-are-not-hiding-anything-miasnikovich-is-quoted-saying.html

Background on African Swine Fever Virus as a human pathogen:

"African Swine fever is an endemic disease in sub-Saharan Africa and many other parts of the developing world. It is caused by the African Swine virus that primarily replicates in macrophages and monocytes leading to the impairment of the structure and function of the immune system of the infected organisms. Until now the African Swine epidemic continues to spread despite all efforts to contain it. Thus, there is an objective need for effective, safe and affordable preventive and therapeutic approaches, in particular for effective vaccines, to control and eventually eradicate this disease. Since the characteristic feature of the African Swine virus is to impair the immune system and to cause immune deficiencies in its hosts the development of vaccines and other therapeutic approaches against the African Swine virus has implications for other immune deficiencies or diseases. Several other viruses are also known to cause immunodeficiency-like syndromes in humans, including cytomegalovirus, Epstein Barr Virus and others. Moreover, a series of cases of so-called "idiopathic" immunodeficiencies have been documented that display CD4+T-lymphocytopenia with opportunistic infections, but show no evidence of HIV infection. Since antibodies for the African Swine virus have been detected in humans, the possibility of human infection with the African Swine virus exists and may thus far have escaped any systematic screening. Thus, any preventive and therapeutic approach to African Swine fever can have far-reaching implications to control immune deficiency conditions in humans."http://www.faqs.org/patents/app/20080207875

Detection of Novel Sequences Related to African Swine Fever Virus in Human Serum and Sewage.


Loh J, Zhao G, Presti RM, Holtz LR, Finkbeiner SR, Droit L, Villasana Z, Todd C, Pipas JM, Calgua B, Girones R, Wang D, Virgin HW.

Departments of Pathology & Immunology and Molecular Microbiology, Department of Medicine and Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri; Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Microbiology, Faculty of Biology, University of Barcelona, Barcelona, Spain.

"The family Asfarviridae contains only a single virus species, African swine fever virus (ASFV). ASFV is a viral agent with significant economic impact due to its devastating effects on populations of domesticated pigs during outbreaks, but has not been reported to infect humans. We report here the discovery of novel viral sequences in human serum and sewage which are clearly related to the Asfarvirus family, but highly divergent from ASFV. Detection of these sequences suggests that greater genetic diversity may exist among Asfarviruses than previously thought, and raises the possibility that human infection by Asfarviruses may occur."
http://www.ncbi.nlm.nih.gov/pubmed/19812170?dopt=Abstract

African Swine Fever Virus (Asfarviridae) sequences found in people with febrile illnesses

Abstract
Virus Identification in Unknown Tropical Febrile Illness Cases Using Deep Sequencing
Dengue virus is an emerging infectious agent that infects an estimated 50–100 million people annually worldwide, yet current diagnostic practices cannot detect an etiologic pathogen in ∼40% of dengue-like illnesses. Metagenomic approaches to pathogen detection, such as viral microarrays and deep sequencing, are promising tools to address emerging and non-diagnosable disease challenges. In this study, we used the Virochip microarray and deep sequencing to characterize the spectrum of viruses present in human sera from 123 Nicaraguan patients presenting with dengue-like symptoms but testing negative for dengue virus. We utilized a barcoding strategy to simultaneously deep sequence multiple serum specimens, generating on average over 1 million reads per sample. We then implemented a stepwise bioinformatic filtering pipeline to remove the majority of human and low-quality sequences to improve the speed and accuracy of subsequent unbiased database searches. By deep sequencing, we were able to detect virus sequence in 37% (45/123) of previously negative cases. These included 13 cases with Human Herpesvirus 6 sequences. Other samples contained sequences with similarity to sequences from viruses in the Herpesviridae, Flaviviridae, Circoviridae, Anelloviridae, Asfarviridae, and Parvoviridae families. In some cases, the putative viral sequences were virtually identical to known viruses, and in others they diverged, suggesting that they may derive from novel viruses. These results demonstrate the utility of unbiased metagenomic approaches in the detection of known and divergent viruses in the study of tropical febrile illness.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3274504/

Detection of African swine fever virus-like sequences in ponds in the Mississippi Delta through metagenomic sequencing

" . .. further study is needed to characterize their potential risks to both public health and agricultural development."

http://link.springer.com/article/10.1007%2Fs11262-013-0878-2

ASF virus, adapted to grow in VERO cells, produces a strong cytopathic effect in human macrophages leading to cell destruction.

http://vir.sgmjournals.org/content/34/3/455.short

Russia suspends pork imports from Belarus over African swine fever

http://www.1prime.biz/news/_Russia_suspends_pork_imports_from_Belarus_over_African_swine_fever/0/%7BB5B0C730-4834-4E86-9C63-91A73E5A4DBA%7D.uif

Wednesday, August 28, 2013

Back in 2007 Taiwan raised ASFV alert

http://www.efeedlink.com/contents/12-04-2007/d1ca0179-4329-406a-95b0-b085d4f8c234-a181.html


http://www.taipeitimes.com/News/taiwan/archives/2007/12/01/2003390654 



Did China cover up ASFV back in 2007?


http://www.pigprogress.net/Home/General/2007/12/China-Denies-African-swine-fever-outbreak-PP001164W/


From ProMED:
 http://www.promedmail.org/direct.php?id=20070525.1675

 UNDIAGNOSED DISEASE, PORCINE - CHINA (05)
*****************************************
A ProMED-mail post
<http://www.promedmail.org>
ProMED-mail is a program of the
International Society for Infectious Diseases
<http://www.isid.org>
Date: Fri 25 May 2007
From: Peter Roeder <Peter.Roeder@fao.org>

Re: Porcine reprod & resp syndr - China (Guangdong): OIE
--------------------------------------------------------
I wonder if anyone has included African swine fever [ASF] in
diagnostic investigations of the syndrome. It is not only clinically
and pathologically virtually indistinguishable from classical swine
fever but has a demonstrated record of ability to spread globally.
China has a strong and increasing presence in Africa where the
disease is widespread and it is not beyond the realm of possibility
that a returning worker could have brought back some infected pork as happened in Belgium some years ago.

--
Communicated by:
Dr Peter Roeder, BVetMed, MSc, PhD, MRCVS
Animal Health Officer (Virology) and GREP Secretary
Animal Health Service
Animal Production and Health Division
Food and Agriculture Organization of the United Nations
Rome, Italy
<Peter.Roeder@fao.org>
[The disease, which obtained in China the name "High fever disease"
since its 1st known detection in mid-2006, was initially attributed
to a mix infection of PRRS, classical swine fever (CSF) and porcine
circovirus (PCV-2), and probably additional agents; see China's
notification to the OIE of 14 Sep 2006, included in posting
20060924.2732. According to the recent Chinese notification to the
OIE of 9 May 2007, a similar syndrome in Guandong was "probably
caused by highly pathogenic Porcine Reproductive and Respiratory
Syndrome (PRRS) virus" while "laboratory diagnosis was ongoing".
ProMED-mail commented that the apparent case fatality rate (20
percent) hardly fits the description "sub-clinical" used in the
notification, and underlined the need for additional data on the PRRS
virus, currently circulating in vast areas of China and Vietnam, and
for the exclusion of other disease agents such as avian influenza
and classical swine fever (CSF); see commentary in archived 20070514.1533.
Dr. Roeder's suggestion to include ASF virus in the diagnostic
investigations of the syndrome is justified, particularly since the
"High fever disease," according to unofficial sources, has been
observed during the past several months in more than 7 provinces of
China killing more than 20 million pigs, while the official OIE
notification of 9 May 2007 referred to one province (Guandong).
For details on Belgium's ASF outbreak in 1985, see Mod PC's
commentary in posting Classical Swine Fever (CSF) -
Europe 19970219.0406. - Mod.AS].

Additional measures to fight African swine fever in Belarus

http://www.blackseagrain.net/novosti/additional-measures-to-fight-african-swine-fever-in-belarus

Introduction of African Swine Fever into the European Union through Illegal Importation of Pork and Pork Products

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0061104

Threat of African swine fever persists in seven Moscow districts

http://www.interfax.co.uk/russia-business-and-financial-news/threat-of-african-swine-fever-persists-in-seven-moscow-districts/

Wednesday, August 14, 2013

Are Russian Farmers Eating Pigs Infected with African Swine Fever?

http://www.globalmeatnews.com/Industry-Markets/Russia-culls-70-000-pigs-in-ASF-backlash

Background on African Swine Fever Virus as a human pathogen:

"African Swine fever is an endemic disease in sub-Saharan Africa and many other parts of the developing world. It is caused by the African Swine virus that primarily replicates in macrophages and monocytes leading to the impairment of the structure and function of the immune system of the infected organisms. Until now the African Swine epidemic continues to spread despite all efforts to contain it. Thus, there is an objective need for effective, safe and affordable preventive and therapeutic approaches, in particular for effective vaccines, to control and eventually eradicate this disease. Since the characteristic feature of the African Swine virus is to impair the immune system and to cause immune deficiencies in its hosts the development of vaccines and other therapeutic approaches against the African Swine virus has implications for other immune deficiencies or diseases. Several other viruses are also known to cause immunodeficiency-like syndromes in humans, including cytomegalovirus, Epstein Barr Virus and others. Moreover, a series of cases of so-called "idiopathic" immunodeficiencies have been documented that display CD4+T-lymphocytopenia with opportunistic infections, but show no evidence of HIV infection. Since antibodies for the African Swine virus have been detected in humans, the possibility of human infection with the African Swine virus exists and may thus far have escaped any systematic screening. Thus, any preventive and therapeutic approach to African Swine fever can have far-reaching implications to control immune deficiency conditions in humans."http://www.faqs.org/patents/app/20080207875

Detection of Novel Sequences Related to African Swine Fever Virus in Human Serum and Sewage.


Loh J, Zhao G, Presti RM, Holtz LR, Finkbeiner SR, Droit L, Villasana Z, Todd C, Pipas JM, Calgua B, Girones R, Wang D, Virgin HW.

Departments of Pathology & Immunology and Molecular Microbiology, Department of Medicine and Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri; Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Microbiology, Faculty of Biology, University of Barcelona, Barcelona, Spain.

"The family Asfarviridae contains only a single virus species, African swine fever virus (ASFV). ASFV is a viral agent with significant economic impact due to its devastating effects on populations of domesticated pigs during outbreaks, but has not been reported to infect humans. We report here the discovery of novel viral sequences in human serum and sewage which are clearly related to the Asfarvirus family, but highly divergent from ASFV. Detection of these sequences suggests that greater genetic diversity may exist among Asfarviruses than previously thought, and raises the possibility that human infection by Asfarviruses may occur."
http://www.ncbi.nlm.nih.gov/pubmed/19812170?dopt=Abstract

African Swine Fever Virus (Asfarviridae) sequences found in people with febrile illnesses

Abstract
Virus Identification in Unknown Tropical Febrile Illness Cases Using Deep Sequencing
Dengue virus is an emerging infectious agent that infects an estimated 50–100 million people annually worldwide, yet current diagnostic practices cannot detect an etiologic pathogen in ∼40% of dengue-like illnesses. Metagenomic approaches to pathogen detection, such as viral microarrays and deep sequencing, are promising tools to address emerging and non-diagnosable disease challenges. In this study, we used the Virochip microarray and deep sequencing to characterize the spectrum of viruses present in human sera from 123 Nicaraguan patients presenting with dengue-like symptoms but testing negative for dengue virus. We utilized a barcoding strategy to simultaneously deep sequence multiple serum specimens, generating on average over 1 million reads per sample. We then implemented a stepwise bioinformatic filtering pipeline to remove the majority of human and low-quality sequences to improve the speed and accuracy of subsequent unbiased database searches. By deep sequencing, we were able to detect virus sequence in 37% (45/123) of previously negative cases. These included 13 cases with Human Herpesvirus 6 sequences. Other samples contained sequences with similarity to sequences from viruses in the Herpesviridae, Flaviviridae, Circoviridae, Anelloviridae, Asfarviridae, and Parvoviridae families. In some cases, the putative viral sequences were virtually identical to known viruses, and in others they diverged, suggesting that they may derive from novel viruses. These results demonstrate the utility of unbiased metagenomic approaches in the detection of known and divergent viruses in the study of tropical febrile illness.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3274504/

Detection of African swine fever virus-like sequences in ponds in the Mississippi Delta through metagenomic sequencing

" . .. further study is needed to characterize their potential risks to both public health and agricultural development."

http://link.springer.com/article/10.1007%2Fs11262-013-0878-2

Saturday, August 10, 2013

What every French and German journalist should know about African Swine Fever Virus


Russian Scientist: ASF could become a human health risk


"The African swine fever (ASF) virus, may in the future become dangerous for humans, according to the head of the Russian Epidemiology Service, Chief State Sanitary Doctor Gennady Onishchenko, at the press-conference in St. Petersburg. According to him almost all viruses from time to time go through mutation processes which can give them some additional functions."

 http://www.pigprogress.net/Health-Diseases/Outbreaks/2013/7/ASF-could-become-a-human-health-risk-1308047W/

 

 



Background on African Swine Fever Virus as a human pathogen:

"African Swine fever is an endemic disease in sub-Saharan Africa and many other parts of the developing world. It is caused by the African Swine virus that primarily replicates in macrophages and monocytes leading to the impairment of the structure and function of the immune system of the infected organisms. Until now the African Swine epidemic continues to spread despite all efforts to contain it. Thus, there is an objective need for effective, safe and affordable preventive and therapeutic approaches, in particular for effective vaccines, to control and eventually eradicate this disease. Since the characteristic feature of the African Swine virus is to impair the immune system and to cause immune deficiencies in its hosts the development of vaccines and other therapeutic approaches against the African Swine virus has implications for other immune deficiencies or diseases. Several other viruses are also known to cause immunodeficiency-like syndromes in humans, including cytomegalovirus, Epstein Barr Virus and others. Moreover, a series of cases of so-called "idiopathic" immunodeficiencies have been documented that display CD4+T-lymphocytopenia with opportunistic infections, but show no evidence of HIV infection. Since antibodies for the African Swine virus have been detected in humans, the possibility of human infection with the African Swine virus exists and may thus far have escaped any systematic screening. Thus, any preventive and therapeutic approach to African Swine fever can have far-reaching implications to control immune deficiency conditions in humans."http://www.faqs.org/patents/app/20080207875

Detection of Novel Sequences Related to African Swine Fever Virus in Human Serum and Sewage.


Loh J, Zhao G, Presti RM, Holtz LR, Finkbeiner SR, Droit L, Villasana Z, Todd C, Pipas JM, Calgua B, Girones R, Wang D, Virgin HW.

Departments of Pathology & Immunology and Molecular Microbiology, Department of Medicine and Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri; Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Microbiology, Faculty of Biology, University of Barcelona, Barcelona, Spain.

"The family Asfarviridae contains only a single virus species, African swine fever virus (ASFV). ASFV is a viral agent with significant economic impact due to its devastating effects on populations of domesticated pigs during outbreaks, but has not been reported to infect humans. We report here the discovery of novel viral sequences in human serum and sewage which are clearly related to the Asfarvirus family, but highly divergent from ASFV. Detection of these sequences suggests that greater genetic diversity may exist among Asfarviruses than previously thought, and raises the possibility that human infection by Asfarviruses may occur."
http://www.ncbi.nlm.nih.gov/pubmed/19812170?dopt=Abstract

African Swine Fever Virus (Asfarviridae) sequences found in people with febrile illnesses

Abstract
Virus Identification in Unknown Tropical Febrile Illness Cases Using Deep Sequencing
Dengue virus is an emerging infectious agent that infects an estimated 50–100 million people annually worldwide, yet current diagnostic practices cannot detect an etiologic pathogen in ∼40% of dengue-like illnesses. Metagenomic approaches to pathogen detection, such as viral microarrays and deep sequencing, are promising tools to address emerging and non-diagnosable disease challenges. In this study, we used the Virochip microarray and deep sequencing to characterize the spectrum of viruses present in human sera from 123 Nicaraguan patients presenting with dengue-like symptoms but testing negative for dengue virus. We utilized a barcoding strategy to simultaneously deep sequence multiple serum specimens, generating on average over 1 million reads per sample. We then implemented a stepwise bioinformatic filtering pipeline to remove the majority of human and low-quality sequences to improve the speed and accuracy of subsequent unbiased database searches. By deep sequencing, we were able to detect virus sequence in 37% (45/123) of previously negative cases. These included 13 cases with Human Herpesvirus 6 sequences. Other samples contained sequences with similarity to sequences from viruses in the Herpesviridae, Flaviviridae, Circoviridae, Anelloviridae, Asfarviridae, and Parvoviridae families. In some cases, the putative viral sequences were virtually identical to known viruses, and in others they diverged, suggesting that they may derive from novel viruses. These results demonstrate the utility of unbiased metagenomic approaches in the detection of known and divergent viruses in the study of tropical febrile illness.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3274504/

Detection of African swine fever virus-like sequences in ponds in the Mississippi Delta through metagenomic sequencing

" . .. further study is needed to characterize their potential risks to both public health and agricultural development."

http://link.springer.com/article/10.1007%2Fs11262-013-0878-2

ASF virus, adapted to grow in VERO cells, produces a strong cytopathic effect in human macrophages leading to cell destruction.

http://vir.sgmjournals.org/content/34/3/455.short

Thursday, August 1, 2013

"Now the disease is a continental-scale threat."

Ban on wild boar culling might be fraught with biological catastrophe

"Risks of the infection spreading are colossal, since Poland has a very big wild boar population. Infected animals will spread ASF across the entire Europe just overnight"

http://www.itar-tass.com/en/c154/827331.html

What every Russian journalist should know about African Swine Fever virus

Russian Scientist: ASF could become a human health risk


"The African swine fever (ASF) virus, may in the future become dangerous for humans, according to the head of the Russian Epidemiology Service, Chief State Sanitary Doctor Gennady Onishchenko, at the press-conference in St. Petersburg. According to him almost all viruses from time to time go through mutation processes which can give them some additional functions."

 http://www.pigprogress.net/Health-Diseases/Outbreaks/2013/7/ASF-could-become-a-human-health-risk-1308047W/

 

 

 

 

 

Articles continue to insist ASFV does not affect humans. Is that a Big Lie?

http://www.itar-tass.com/en/c154/821223.html

Background on African Swine Fever Virus as a human pathogen:

"African Swine fever is an endemic disease in sub-Saharan Africa and many other parts of the developing world. It is caused by the African Swine virus that primarily replicates in macrophages and monocytes leading to the impairment of the structure and function of the immune system of the infected organisms. Until now the African Swine epidemic continues to spread despite all efforts to contain it. Thus, there is an objective need for effective, safe and affordable preventive and therapeutic approaches, in particular for effective vaccines, to control and eventually eradicate this disease. Since the characteristic feature of the African Swine virus is to impair the immune system and to cause immune deficiencies in its hosts the development of vaccines and other therapeutic approaches against the African Swine virus has implications for other immune deficiencies or diseases. Several other viruses are also known to cause immunodeficiency-like syndromes in humans, including cytomegalovirus, Epstein Barr Virus and others. Moreover, a series of cases of so-called "idiopathic" immunodeficiencies have been documented that display CD4+T-lymphocytopenia with opportunistic infections, but show no evidence of HIV infection. Since antibodies for the African Swine virus have been detected in humans, the possibility of human infection with the African Swine virus exists and may thus far have escaped any systematic screening. Thus, any preventive and therapeutic approach to African Swine fever can have far-reaching implications to control immune deficiency conditions in humans."http://www.faqs.org/patents/app/20080207875

Detection of Novel Sequences Related to African Swine Fever Virus in Human Serum and Sewage.


Loh J, Zhao G, Presti RM, Holtz LR, Finkbeiner SR, Droit L, Villasana Z, Todd C, Pipas JM, Calgua B, Girones R, Wang D, Virgin HW.

Departments of Pathology & Immunology and Molecular Microbiology, Department of Medicine and Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri; Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Microbiology, Faculty of Biology, University of Barcelona, Barcelona, Spain.

"The family Asfarviridae contains only a single virus species, African swine fever virus (ASFV). ASFV is a viral agent with significant economic impact due to its devastating effects on populations of domesticated pigs during outbreaks, but has not been reported to infect humans. We report here the discovery of novel viral sequences in human serum and sewage which are clearly related to the Asfarvirus family, but highly divergent from ASFV. Detection of these sequences suggests that greater genetic diversity may exist among Asfarviruses than previously thought, and raises the possibility that human infection by Asfarviruses may occur."
http://www.ncbi.nlm.nih.gov/pubmed/19812170?dopt=Abstract

African Swine Fever Virus (Asfarviridae) sequences found in people with febrile illnesses

Abstract
Virus Identification in Unknown Tropical Febrile Illness Cases Using Deep Sequencing
Dengue virus is an emerging infectious agent that infects an estimated 50–100 million people annually worldwide, yet current diagnostic practices cannot detect an etiologic pathogen in ∼40% of dengue-like illnesses. Metagenomic approaches to pathogen detection, such as viral microarrays and deep sequencing, are promising tools to address emerging and non-diagnosable disease challenges. In this study, we used the Virochip microarray and deep sequencing to characterize the spectrum of viruses present in human sera from 123 Nicaraguan patients presenting with dengue-like symptoms but testing negative for dengue virus. We utilized a barcoding strategy to simultaneously deep sequence multiple serum specimens, generating on average over 1 million reads per sample. We then implemented a stepwise bioinformatic filtering pipeline to remove the majority of human and low-quality sequences to improve the speed and accuracy of subsequent unbiased database searches. By deep sequencing, we were able to detect virus sequence in 37% (45/123) of previously negative cases. These included 13 cases with Human Herpesvirus 6 sequences. Other samples contained sequences with similarity to sequences from viruses in the Herpesviridae, Flaviviridae, Circoviridae, Anelloviridae, Asfarviridae, and Parvoviridae families. In some cases, the putative viral sequences were virtually identical to known viruses, and in others they diverged, suggesting that they may derive from novel viruses. These results demonstrate the utility of unbiased metagenomic approaches in the detection of known and divergent viruses in the study of tropical febrile illness.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3274504/

Detection of African swine fever virus-like sequences in ponds in the Mississippi Delta through metagenomic sequencing

" . .. further study is needed to characterize their potential risks to both public health and agricultural development."

http://link.springer.com/article/10.1007%2Fs11262-013-0878-2

ASF virus, adapted to grow in VERO cells, produces a strong cytopathic effect in human macrophages leading to cell destruction.

http://vir.sgmjournals.org/content/34/3/455.short

"It is thought that Russian back-yard producers have no reason to trust authorities and are likely to sabotage any efforts to keep ASF at bay."


Russia May Ban Backyard Pig Production


http://www.thepigsite.com/swinenews/33880/russia-may-ban-backyard-pig-production

Russian ministry of natural resources: Wild boar culling will not prevent ASF spread

"According to the ministry, the key factor behind African swine fever outbreaks is the so-called human factor, i.e. violations of veterinary and sanitary norms at pig farms and illegal transportation of infected products."
http://www.itar-tass.com/en/c32/827301.html

Russian prime minister to tackle African swine fever problem

http://www.heraldscotland.com/business/farming/russian-prime-minister-to-tackle-african-swine-fever-problem.21749152